Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates

[1]  J. Raven The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature , 2017 .

[2]  Mridul K. Thomas,et al.  Temperature‐ and size‐scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology , 2017 .

[3]  Elena Litchman,et al.  Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level , 2016 .

[4]  S. Blagodatsky,et al.  Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro , 2016, Scientific Reports.

[5]  A. Buckling,et al.  Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton , 2015, Ecology letters.

[6]  M. Behrenfeld,et al.  Advancing interpretations of 14C-uptake measurements in the context of phytoplankton physiology and ecology , 2015 .

[7]  Adam C. Martiny,et al.  A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems , 2015, Proceedings of the National Academy of Sciences.

[8]  A. Huryn,et al.  Interactions between temperature and nutrients across levels of ecological organization , 2015, Global change biology.

[9]  B. Franz,et al.  Chlorophyll variability in the oligotrophic gyres: mechanisms, seasonality and trends , 2015, Front. Mar. Sci..

[10]  K. Halsey,et al.  Phytoplankton strategies for photosynthetic energy allocation. , 2015, Annual review of marine science.

[11]  E. Marañón Cell size as a key determinant of phytoplankton metabolism and community structure. , 2015, Annual review of marine science.

[12]  Jodi N. Young,et al.  Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. , 2015, The New phytologist.

[13]  E. Marañón,et al.  Photosynthesis and respiration in marine phytoplankton: Relationship with cell size, taxonomic affiliation, and growth phase , 2014 .

[14]  Emilio Marañón,et al.  Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth , 2014, PloS one.

[15]  Bangqin Huang,et al.  Temperature effects on the growth rate of marine picoplankton , 2014 .

[16]  K. Arrigo,et al.  Processes and patterns of oceanic nutrient limitation , 2013 .

[17]  K. Caldeira,et al.  Effect of Temperature on Photosynthesis and Growth in Marine Synechococcus spp.1[C][OPEN] , 2013, Plant Physiology.

[18]  Stephanie Dutkiewicz,et al.  Winners and losers: Ecological and biogeochemical changes in a warming ocean , 2013 .

[19]  Emilio Marañón,et al.  Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. , 2013, Ecology letters.

[20]  R. Geider Quantitative phytoplankton physiology: implications for primary production and phytoplankton growth , 2013 .

[21]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[22]  Elena Litchman,et al.  A Global Pattern of Thermal Adaptation in Marine Phytoplankton , 2012, Science.

[23]  Steven D. Allison,et al.  The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross‐latitudinal study , 2012 .

[24]  Andreas Oschlies,et al.  Can we predict the direction of marine primary production change under global warming? , 2011 .

[25]  S. Doney,et al.  Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light , 2010 .

[26]  M. Piehler,et al.  Warming and Resource Availability Shift Food Web Structure and Metabolism , 2009, PLoS biology.

[27]  Melanie Abecassis,et al.  Ocean's least productive waters are expanding , 2008 .

[28]  P. Falkowski,et al.  Mix and match: how climate selects phytoplankton , 2007, Nature Reviews Microbiology.

[29]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[30]  P. Staehr,et al.  Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species , 2006 .

[31]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[33]  K. Sand‐Jensen,et al.  Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities , 2006 .

[34]  K. Flynn,et al.  Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. , 2006, The New phytologist.

[35]  E. Davidson,et al.  On the variability of respiration in terrestrial ecosystems: moving beyond Q10 , 2006 .

[36]  James H. Brown,et al.  Linking the global carbon cycle to individual metabolism , 2005 .

[37]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[38]  E. Marañón Phytoplankton growth rates in the Atlantic subtropical gyres , 2005 .

[39]  G. Somero Adaptation of enzymes to temperature: searching for basic "strategies". , 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[40]  Scott C. Doney,et al.  Response of ocean ecosystems to climate warming , 2004 .

[41]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[42]  B. Brahamsha,et al.  Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism , 2004 .

[43]  D. Montagnes,et al.  Protists decrease in size linearly with temperature: ca. 2.5% °C−1 , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  W. Gieskes,et al.  Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae) , 2002 .

[45]  R. Geider,et al.  Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis , 2002 .

[46]  E. Paasche A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions , 2001 .

[47]  David J. S. Montagnes,et al.  Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms , 2001 .

[48]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[49]  Gurvan Madec,et al.  Potential impact of climate change on marine export production , 2001 .

[50]  T. Kana,et al.  Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature , 1997 .

[51]  David M. Glover,et al.  A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site , 1996 .

[52]  G. Somero,et al.  Proteins and temperature. , 1995, Annual review of physiology.

[53]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .

[54]  R. Geider Respiration: Taxation Without Representation? , 1992 .

[55]  K. Banse Rates of phytoplankton cell division in the field and in iron enrichment experiments , 1991 .

[56]  B. Osborne,et al.  Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth , 1989 .

[57]  D. Kiefer,et al.  A steady state description ofgrowth and light absorption in the marine planktonic diatom Skeletonema costatum , 1989 .

[58]  J. Raven,et al.  Temperature and algal growth , 1988 .

[59]  Chris Langdon,et al.  On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis , 1987 .

[60]  B. Osborne,et al.  Effect of nitrate‐nitrogen limitation on photosynthesis of the diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae) , 1986 .

[61]  W. Thomas,et al.  Effect of interactions between temperature and nitrate supply on the cell-division rates of two marine phytoflagellates , 1974 .

[62]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[63]  James J. McCarthy,et al.  HALF‐SATURATION CONSTANTS FOR UPTAKE OF NITRATE AND AMMONIUM BY MARINE PHYTOPLANKTON1 , 1969 .