Innovative Systems for Storage of Thermal Solar Energy in Buildings

[1]  Alberto Coronas,et al.  Absorption of water vapour in the falling film of water–lithium bromide inside a vertical tube at air-cooling thermal conditions , 2002 .

[2]  T Fujita,et al.  Falling liquid films in absorption machines , 1993 .

[3]  William A. Ryan,et al.  Simple analytical model for the design of vertical tube absorbers , 1993 .

[4]  M. Christians Falling Film Evaporation , 2011 .

[5]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[6]  B. J. Brinkworth,et al.  The storage of low grade thermal energy using phase change materials , 1976 .

[7]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[8]  M H Saeidi,et al.  MODELING HEAT AND MASS TRANSFER IN FALLING FILM ABSORPTION GENERATORS , 2004 .

[9]  D. Arnaud,et al.  Propriétés du cuivre et de ses alliages , 1985, Étude et propriétés des métaux.

[10]  Lingai Luo,et al.  Experimentation of a LiBr–H2O absorption process for long-term solar thermal storage: Prototype design and first results , 2013 .

[11]  Tariq Muneer,et al.  Solar Thermal Technologies. , 2008 .

[12]  W. Beckman,et al.  Solar energy thermal processes , 1974 .

[13]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .

[14]  L. W. Wang,et al.  Sorption thermal storage for solar energy , 2013 .

[15]  G. Vliet,et al.  Design guidelines for water-lithium bromide absorbers , 1983 .

[16]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[17]  H. P. Garg,et al.  Solar Thermal Energy Storage , 1985 .

[18]  B. D. Wood,et al.  Absorption of water vapour into falling films of aqueous lithium bromide , 1995 .

[19]  G. Kreysa,et al.  Dechema corrosion handbook : corrosive agents and their interaction with materials , 1987 .

[20]  G. Grossman Adiabatic absorption and desorption for improvement of temperature-boosting absorption heat pumps , 1982 .

[21]  L. Cabeza,et al.  Selection of materials with potential in sensible thermal energy storage , 2010 .

[22]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[23]  Short term thermal energy storage , 1980 .

[24]  A. Tamir,et al.  Enthalpy of solution of lithium bromide, lithium bromide monohydrate, and lithium bromide dihydrate, in water at 298.15 K , 1986 .

[25]  Gershon Grossman,et al.  Heat-transfer enhancement by additives. , 1996 .

[26]  Zhong Lan,et al.  Numerical simulation on the falling film absorption process in a counter-flow absorber , 2010 .

[27]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[28]  S. Srinivasa Murthy,et al.  Influence of generator effectiveness on performance of vapour absorption heat transformers , 1989 .

[29]  Charles E. Wyman,et al.  A review of collector and energy storage technology for intermediate temperature applications , 1980 .

[30]  Lingai Luo,et al.  Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system , 2012 .

[31]  Itsuki Morioka,et al.  Absorption of Water Vapor into a Wavy Film of an Aqueous Solution of LiBr , 1991 .

[32]  Ding Li,et al.  Liquid Distribution in Falling Film Evaporators , 1992 .

[33]  Georgios A. Florides,et al.  Design and construction of a LiBr–water absorption machine , 2003 .

[34]  Wolfgang Wagner,et al.  International Equations for the Saturation Properties of Ordinary Water Substance , 1987 .

[35]  Hassan E.S. Fath,et al.  Technical assessment of solar thermal energy storage technologies , 1998 .

[36]  Krzysztof Banasiak,et al.  Mathematical modelling of a LiBr–H2O absorption chiller including two-dimensional distributions of temperature and concentration fields for heat and mass exchangers , 2009 .

[37]  Gershon Grossman,et al.  Simulation and performance analysis of a 4-effect lithium bromide-water absorption chiller , 1995 .

[38]  Liu Hui,et al.  Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples , 2011 .

[39]  Huen Lee,et al.  Absorption of water vapour into lithium bromide-based solutions with additives using a simple stagnant pool absorber , 1999 .

[40]  Kokouvi Edem N’Tsoukpoe Etude du stockage à long terme de l'énergie solaire thermique par procédé d'absorption LiBr-H2O pour le chauffage de l'habitat , 2012 .

[41]  Reinhard Radermacher,et al.  Absorption Chillers and Heat Pumps , 1996 .

[42]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[43]  S. Kaushik,et al.  Dynamic simulation of an ammonia-water absorption cycle solar heat pump with integral refrigerant storage , 1985 .

[44]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[45]  de l’Énergie et de la Mer,et al.  Le stockage de l’énergie , 2016 .

[46]  D. Yogi Goswami,et al.  Principles of Solar Engineering , 1978 .

[47]  N. L. Pierrès,et al.  Thermodynamic study of a LiBr–H2O absorption process for solar heat storage with crystallisation of the solution , 2014 .