Knowledge Representation Issues in Control Knowledge Learning

[1]  Tara A. Estlin,et al.  Hybrid learning of search control for partial-order planning , 1996 .

[2]  James A. Hendler,et al.  Flexible reuse and modification in hierarchical planning: a validation structure-based approach , 1989 .

[3]  Oren Etzioni,et al.  DYNAMIC: A New Role for Training Problems in EBL , 1992, ML.

[4]  C. D. Gelatt,et al.  Lazy Explanation-based Learning: a Solu- Tion to the Intractable Theory Problem. in a Self- Organizing Retrieval System for Graphs. in 6. Conclusions and Ongoing Directions , 1991 .

[5]  Jaime G. Carbonell,et al.  Learning by experimentation: the operator refinement method , 1990 .

[6]  Pat Langley,et al.  Learning Effective Search Heuristics , 1983, IJCAI.

[7]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[8]  Subbarao Kambhampati,et al.  Explanation-Based Generalization of Partially Ordered Plans , 1991, AAAI.

[9]  Ingrid Zukerman,et al.  Inductive Learning of Search Control Rules for Planning , 1998, Artif. Intell..

[10]  Craig A. Knoblock,et al.  Learning Plan Rewriting Rules , 2000, AIPS.

[11]  Bart Selman,et al.  Learning Declarative Control Rules for Constraint-BAsed Planning , 2000, ICML.

[12]  David W. Aha,et al.  CaMeL: Learning Method Preconditions for HTN Planning , 2002, AIPS.

[13]  Prasad Tadepalli,et al.  Learning Horn definitions: Theory and an application to planning , 2009, New Generation Computing.

[14]  Hector Geffner,et al.  Learning Generalized Policies in Planning Using Concept Languages , 2000, KR.

[15]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[16]  Xuemei Wang,et al.  Learning Planning Operators by Observation and Practice , 1994, AIPS.

[17]  Craig A. Knoblock Automatically generating abstractions for problem solving , 1991 .

[18]  Ramón García-Martínez,et al.  An Integrated Approach of Learning, Planning, and Execution , 2000, J. Intell. Robotic Syst..

[19]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[20]  G. Tesauro Practical Issues in Temporal Difference Learning , 1992 .

[21]  Kathy Ryall,et al.  Learning hierarchical task models by defining and refining examples , 2001, K-CAP '01.

[22]  Richard E. Korf,et al.  Macro-Operators: A Weak Method for Learning , 1985, Artif. Intell..

[23]  David Ruby,et al.  Learning Episodes for Optimization , 1992, ML.

[24]  Jaime G. Carbonell,et al.  Learning effective search control knowledge: an explanation-based approach , 1988 .

[25]  Subbarao Kambhampati,et al.  Learning search control rules for plan-space planners: factors affecting the performance , 1996 .

[26]  Subbarao Kambhampati,et al.  Planning Graph as a (Dynamic) CSP: Exploiting EBL, DDB and other CSP Search Techniques in Graphplan , 2000, J. Artif. Intell. Res..

[27]  Tom M. Mitchell,et al.  Learning by experimentation: acquiring and refining problem-solving heuristics , 1993 .

[28]  Raymond J. Mooney,et al.  Combining FOIL and EBG to Speed-up Logic Programs , 1993, IJCAI.

[29]  S. Kambhampati,et al.  Learning Explanation-Based Search Control Rules for Partial Order Planning , 1994, AAAI.

[30]  Pedro Isasi Viñuela,et al.  Using genetic programming to learn and improve control knowledge , 2002, Artif. Intell..

[31]  Manuela M. Veloso,et al.  Planning and Learning by Analogical Reasoning , 1994, Lecture Notes in Computer Science.

[32]  Subbarao Kambhampati,et al.  Design and Implementation of a Replay Framework Based on a Partial Order Planner , 1996, AAAI/IAAI, Vol. 1.

[33]  Jaime G. Carbonell,et al.  Control Knowledge to Improve Plan Quality , 1994, AIPS.

[34]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[35]  Gerald DeJong,et al.  COMPOSER: A Probabilistic Solution to the Utility Problem in Speed-Up Learning , 1992, AAAI.

[36]  Roni Khardon,et al.  Learning Action Strategies for Planning Domains , 1999, Artif. Intell..