Forecasting the market diffusion of disruptive and discontinuous innovation

This paper builds on existing knowledge of diffusion forecasting and integrates it with the disruptive and discontinuous innovation literature. Thus, a model is developed for forecasting discontinuous and disruptive innovations. This model takes into account the multiple markets served by discontinuous and disruptive innovation. The role of learning curve effects is also considered. Guidelines, based on the existing literature, are offered for the application of this methodology to forecasting the market diffusion of discontinuous and disruptive innovation. The ability to better forecast the market diffusion of disruptive and discontinuous innovation is especially important now since the convergence of many fields and advances in other areas are creating unprecedented amounts of disruptive and discontinuous innovation.

[1]  Bruce R. Robinson,et al.  Dynamic Price Models for New-Product Planning , 1975 .

[2]  Klaus Brockhoff,et al.  A Test for the Product Life Cycle , 1967 .

[3]  Masataka Yamada,et al.  Forecasting with a repeat purchase diffusion model , 1988 .

[4]  Wilfried R. Vanhonacker,et al.  Using Meta-Analysis Results in Bayesian Updating: The Empty-Cell Problem , 1992 .

[5]  J. M. Jones,et al.  Incorporating distribution into new product diffusion models , 1991 .

[6]  A.P.S. Teotia,et al.  Forecasting the Market Penetration of New Technologies Using a Combination of Economic Cost and Diffusion Models , 1986 .

[7]  Theodore Modis,et al.  Chaoslike states can be expected before and after logistic growth , 1992 .

[8]  F. Bass,et al.  A diffusion theory model of adoption and substitution for successive generations of high-technology products , 1987 .

[9]  Seungmook Choi,et al.  A product diffusion model incorporating repeat purchases , 1985 .

[10]  Denzil G. Fiebig,et al.  A flexible logistic growth model with applications in telecommunications , 1988 .

[11]  D. G. Morrison Purchase Intentions and Purchase Behavior , 1979 .

[12]  E. Mansfield TECHNICAL CHANGE AND THE RATE OF IMITATION , 1961 .

[13]  Robert J. Thomas,et al.  Estimating Market Growth for New Products: An Analogical Diffusion Model Approach , 1985 .

[14]  Vijay Mahajan,et al.  A multi-attribute diffusion model for forecasting the adoption of investment alternatives for consumers , 1985 .

[15]  D. Tigert,et al.  The Bass New Product Growth Model: A Sensitivity Analysis for a High Technology Product , 1981 .

[16]  Peter S. Fader,et al.  An Empirical Comparison of New Product Trial Forecasting Models , 1998 .

[17]  Ambar G. Rao,et al.  Bayesian Estimation and Control of Detailing Effort in a Repeat Purchase Diffusion Environment , 1981 .

[18]  Kenneth D. Lawrence,et al.  Converging conflicting forecasting parameters in forecasting durable new product sales , 1984 .

[19]  John J. Wiorkowski,et al.  Fitting of growth curves over time when the data are obtained from a single realization , 1988 .

[20]  Nigel Meade,et al.  Technological substitution: A framework of stochastic models , 1989 .

[21]  A.Wade Blackman,et al.  A mathematical model for trend forecasts , 1971 .

[22]  Xiao Tingyan A combined growth model for trend forecasts , 1990 .

[23]  Philip M. Parker,et al.  Aggregate diffusion forecasting models in marketing: A critical review , 1994 .

[24]  Hani I. Mesak,et al.  Incorporating Price and Replacement Purchases in New Product Diffusion Models for Consumer Durables , 1995 .

[25]  Louis E. Yelle THE LEARNING CURVE: HISTORICAL REVIEW AND COMPREHENSIVE SURVEY , 1979 .

[26]  Roger A. More,et al.  Sales forecast errors for new product projects , 1978 .

[27]  Hans Levenbach,et al.  Forecasting Trending Time Series with Relative Growth Rate Models , 1976 .

[28]  Rabikar Chatterjee,et al.  The Innovation Diffusion Process in a Heterogeneous Population: A Micromodeling Approach , 1990 .

[29]  Ambar G. Rao,et al.  New Models from Old: Forecasting Product Adoption by Hierarchical Bayes Procedures , 1990 .

[30]  L. Fourt,et al.  Early Prediction of Market Success for New Grocery Products , 1960 .

[31]  Paul Stoneman,et al.  Intra-Firm Diffusion, Bayesian Learning and Profitability , 1981 .

[32]  F. Bass A new product growth model for consumer durables , 1976 .

[33]  Jack C. Lee,et al.  On a family of data-based transformed models useful in forecasting technological substitutions , 1987 .

[34]  Philip M. Parker,et al.  Specifying competitive effects in diffusion models: An empirical analysis , 1994 .

[35]  Charlotte H. Mason,et al.  Technical Note---Nonlinear Least Squares Estimation of New Product Diffusion Models , 1986 .

[36]  Kazimierz Z. Poznański,et al.  International diffusion of steel technologies: Time-lag and the speed of diffusion , 1983 .

[37]  Philip M. Parker,et al.  Comparing adoption patterns: a global approach , 1996 .

[38]  Wilfried R. Vanhonacker,et al.  Combining Related and Sparse Data in Linear Regression Models , 1990 .

[39]  Sanjit Sengupta,et al.  The co-diffusion of complementary innovations: Supermarket scanners and UPC symbols , 1993 .

[40]  G. Soutar,et al.  Consumer Acquisition Patterns for Durable Goods: Australian Evidence , 1982 .

[41]  Uma Kumar,et al.  Innovation diffusion: Some new technological substitution models , 1992 .

[42]  Siva Balasubramanian,et al.  Long-Term Forecasting with Innovation Diffusion Models: The Impact of Replacement Purchases , 1986 .

[43]  T. S. Robertson,et al.  Modeling Multinational Diffusion Patterns: An Efficient Methodology , 1989 .

[44]  M. Cusumano,et al.  Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta , 1992, Business History Review.

[45]  D. Lehmann,et al.  Extent and Impact of Incubation Time in New Product Diffusion , 1999 .

[46]  F. Thomas Juster,et al.  Consumer Buying Intentions and Purchase Probability: An Experiment in Survey Design , 1966 .

[47]  V. Mahajan,et al.  Innovation Diffusion in the Presence of Supply Restrictions , 1991 .

[48]  G. Lilien,et al.  Bias and Systematic Change in the Parameter Estimates of Macro-Level Diffusion Models , 1997 .

[49]  J. C. Fisher,et al.  A simple substitution model of technological change , 1971 .

[50]  Jennifer F. Reinganum Technology Adoption Under Imperfect Information , 1983 .

[51]  Steven T. Walsh,et al.  Line of Sight: A process for transferring science from the laboratory to the market place , 2000 .

[52]  P. Schmidt,et al.  Predicting Criminal Recidivism Using "Split Population" Survival Time Models , 1987 .

[53]  Michael D. Geurts,et al.  New product sales forecasting without past sales data , 1980 .

[54]  Siva Balasubramanian,et al.  Long-Term View of the Diffusion of Durables: A Study of the Role of Price and Adoption Influence Processes via Tests of Nested Models , 1988 .

[55]  K. McCardle Information Acquisition and the Adoption of New Technology , 1985 .

[56]  Russell P. Labe,et al.  Developing and Using Forecasting Models of Consumer Durables The Case of Color Television , 1989 .

[57]  D. Horsky A Diffusion Model Incorporating Product Benefits, Price, Income and Information , 1990 .

[58]  G. Tellis,et al.  Will It Ever Fly? Modeling the Takeoff of Really New Consumer Durables , 1997 .

[59]  L. Hiebert,et al.  Risk, Learning, and the Adoption of Fertilizer Responsive Seed Varieties , 1974 .

[60]  Philip M. Parker,et al.  Global Diffusion of Technological Innovations: A Coupled-Hazard Approach , 2000 .

[61]  Brian C. Twiss,et al.  Forecasting market size and market growth rates for new products , 1984 .

[62]  J. Metcalfe Impulse and diffusion in the study of technical change , 1981 .

[63]  Rajiv K. Sinha,et al.  A Split Hazard Model for Analyzing the Diffusion of Innovations , 1992 .

[64]  Shmuel S. Oren,et al.  Diffusion of new products in risk-sensitive markets , 1988 .

[65]  Siva K. Balasubramanian,et al.  Classifying early product life cycle forms via a diffusion model: Problems and prospects , 1992 .

[66]  Robert J. Thomas,et al.  Forecasting new product market potential: Combining multiple methods , 1987 .

[67]  William H. Redmond,et al.  Diffusion at sub-national levels: A regional analysis of new product growth , 1994 .

[68]  Vijay Mahajan,et al.  Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance , 1982 .

[69]  Kenneth D. Mackenzie,et al.  Some Problems in using Diffusion Models for New Products , 1972 .

[70]  M. N. Sharif,et al.  Binomial innovation diffusion models with dynamic potential adopter population , 1981 .

[71]  Gillian H. Wright,et al.  Forecasting the Future of Video Using a Diffusion Model , 1983 .

[72]  Daryl McKee,et al.  An organizational learning approach to product innovation , 1992 .

[73]  Wellesley J. Dodds,et al.  An Application of the Bass Model in Long-Term New Product Forecasting , 1973 .

[74]  Barry L. Bayus,et al.  Have diffusion rates been accelerating over time? , 1992 .

[75]  B. Bayus Accelerating the Durable Replacement Cycle with Marketing Mix Variables , 1988 .

[76]  Clayton M. Christensen,et al.  Disruptive Technologies: Catching the Wave , 1995 .

[77]  Rias J. van Wyk Management of technology: New frameworks , 1988 .

[78]  Jennifer F. Reinganum On the diffusion of new technology: A game theoretic approach , 1981 .

[79]  C. Easingwood,et al.  An analogical approach to the long term forecasting of major new product sales , 1989 .

[80]  Vijay Mahajan,et al.  Innovation diffusion in a borderless global market: Will the 1992 unification of the European Community accelerate diffusion of new ideas, products, and technologies? , 1994 .

[81]  Cesar Maloles,et al.  Five Modern Lessons from a 55-Year-Old Technological Forecast , 1993 .

[82]  Philip M. Parker,et al.  Choosing among diffusion models: Some empirical evidence , 1993 .

[83]  Patricia W. Meyers,et al.  Defining roles for logistics during routine and radical technological innovation , 1989 .

[84]  William Johnson,et al.  Technological substitution in mobile communications , 1997 .

[85]  Robert Fildes,et al.  The role of prices in models of innovation diffusion , 1998 .

[86]  Andrew Harvey,et al.  Time Series Forecasting Based on the Logistic Curve , 1984 .

[87]  R. Heeler,et al.  Problems in Predicting New Product Growth for Consumer Durables , 1980 .

[88]  U. A. Lavaraj,et al.  Innovation diffusion in a heterogeneous population , 1987 .

[89]  Philip M. Parker,et al.  Order of entry, trial diffusion, and elasticity dynamics: An empirical case , 1996 .

[90]  S. Kalish A New Product Adoption Model with Price, Advertising, and Uncertainty , 1985 .

[91]  G. O'Mara,et al.  Farm size and the diffusion of green revolution technology ; On information and innovation diffusion : a bayesian approach , 1982 .

[92]  William J. Infosino,et al.  Forecasting New Product Sales from Likelihood of Purchase Ratings , 1986 .

[93]  Vicki G. Morwitz,et al.  Using Segmentation to Improve Sales Forecasts Based on Purchase Intent: Which “Intenders” Actually Buy?: , 1992 .

[94]  Nigel Meade,et al.  The diffusion of successive generations of a technology: A more general model , 1997 .

[95]  C. Easingwood,et al.  Diffusion Paths in a High-tech Environment:: clusters and commonalities , 1992 .

[96]  Vijay Mahajan,et al.  Adaptive Technological Substitution Models , 1980 .

[97]  T. S. Robertson,et al.  A Propositional Inventory for New Diffusion Research , 1985 .

[98]  J. Linton,et al.  Infrastructure for Emergent Industries Based on Discontinuous Innovations , 2000 .

[99]  Vijay Gurbaxani,et al.  An Integrative Model of Information Systems Spending Growth , 1990, Inf. Syst. Res..

[100]  Sanjay-kumar Rao An empirical comparison of sales forecasting models , 1985 .

[101]  Ashok Jain,et al.  Requirement of dimensional consistency in model equations , 1992 .

[102]  J. Hauser,et al.  The Value Priority Hypotheses for Consumer Budget Plans , 1986 .

[103]  S. Newell,et al.  The Role of Networks In the Diffusion of Technological Innovation , 1996 .

[104]  John R. Hauser,et al.  Prelaunch forecasting of new automobiles , 1990 .

[105]  E. Muller,et al.  Models of New Product Diffusion Through Advertising and Word-of-Mouth , 1978 .

[106]  Steve H. Barr,et al.  Propensity to adopt technological innovations: the impact of personal characteristics and organizational context , 1999 .

[107]  Donald R. Lehmann,et al.  A Meta-Analysis of Applications of Diffusion Models , 1990 .

[108]  Pat Bodger,et al.  Logistic and energy substitution models for electricity forecasting: A comparison using New Zealand consumption data , 1987 .

[109]  Steffen Josrgensen,et al.  Optimal control of a diffusion model of new product acceptance with price‐dependent total market potential , 1983 .

[110]  Wilfried R. Vanhonacker Commentary on On Bayesian Estimation of Model Parameters , 1990 .

[111]  M. Sarvary,et al.  Staged estimation of international diffusion models - An application to global cellular telephone adoption , 1998 .

[112]  F. Bass The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations , 1980 .

[113]  Peg Young,et al.  Technological growth curves. A competition of forecasting models , 1993 .

[114]  R. Jensen,et al.  Adoption and diffusion of an innovation of uncertain profitability , 1982 .

[115]  Vijay Mahajan,et al.  A simple algebraic estimation procedure for innovation diffusion models of new product acceptance , 1986 .

[116]  C. Skiadas Innovation diffusion models expressing asymmetry and/or positively or negatively influencing forces , 1986 .

[117]  Barry L. Bayus,et al.  Forecasting Sales of New Contingent Products: An Application to the Compact Disc Market , 1987 .

[118]  Barry Bozeman,et al.  Adaptive diffusion models for the growth of robotics in New York state industry , 1986 .

[119]  Robert A. Peterson,et al.  Innovation Diffusion in a Dynamic Potential Adopter Population , 1978 .

[120]  Amos A. Akinola AN APPLICATION OF BASS'S MODEL IN THE ANALYSIS OF DIFFUSION OF COCOA‐SPRAYING CHEMICALS AMONG NIGERIAN COCOA FARMERS , 1986 .

[121]  Christopher J. Easingwood,et al.  Early product life cycle forms for infrequently purchased major products , 1987 .

[122]  T. S. Robertson,et al.  Competitive Effects on Technology Diffusion , 1986 .

[123]  D. Horsky,et al.  Advertising and the Diffusion of New Products , 1983 .

[124]  J. Scott Armstrong,et al.  Research Report - Principles for Examining Predictive Validity: The Case of Information Systems Spending Forecasts , 1994, Inf. Syst. Res..

[125]  Abel P. Jeuland,et al.  Experience Curves and Dynamic Demand Models: Implications for Optimal Pricing Strategies , 1981 .

[126]  V. Mahajan,et al.  Innovation Diffusion and New Product Growth Models in Marketing , 1979 .

[127]  Uma Kumar,et al.  Technological innovation diffusion: the proliferation of substitution models and easing the user's dilemma , 1992 .

[128]  Robert J. Thomas Problems in Demand Estimation For a New Technology , 1985 .

[129]  M.Nawaz Sharif,et al.  The Weibull distribution as a general model for forecasting technological change , 1980 .