Evolutionary algorithm for the k-interconnected multi-depot multi-traveling salesmen problem

We introduce the $k$-Interconnected Multi-Depot Multi-Traveling Salesmen Problem, a new problem that resembles some network design and location routing problems but carries the inherent difficulty of not having a fixed set of depots or terminals. We propose a heuristic based on a biased random-key genetic algorithm to solve it. This heuristic uses local search procedures to best choose the terminal vertices and improve the tours of a given solution. We compare our heuristic with a multi-start procedure using the same local improvements and we show that the proposed algorithm is competitive.

[1]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[2]  Swaroop Darbha,et al.  An approximation algorithm for a symmetric Generalized Multiple Depot, Multiple Travelling Salesman Problem , 2007, Oper. Res. Lett..

[3]  José Pinto Paixão,et al.  Using clustering analysis in a capacitated location-routing problem , 2007, Eur. J. Oper. Res..

[4]  Angel B. Ruiz,et al.  Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic , 2007, Transp. Sci..

[5]  Catherine C. McGeoch A Guide to Experimental Algorithmics , 2012 .

[6]  Mauricio G. C. Resende,et al.  A C++application programming interface for biased random-key genetic algorithms , 2015, Optim. Methods Softw..

[7]  Swaroop Darbha,et al.  A Lagrangian-Based Algorithm for a Multiple Depot, Multiple Travelling Salesmen Problem , 2007, ACC.

[8]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[9]  José-Manuel Belenguer,et al.  A Branch and Cut method for the Capacitated Location-Routing Problem , 2006, 2006 International Conference on Service Systems and Service Management.

[10]  Celso C. Ribeiro,et al.  Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms , 2012, J. Glob. Optim..

[11]  Saïd Salhi,et al.  Location-routing: Issues, models and methods , 2007, Eur. J. Oper. Res..

[12]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[13]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[14]  M. Fay,et al.  Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. , 2010, Statistics surveys.

[15]  Flávio Keidi Miyazawa,et al.  Biased Random-Key Genetic Algorithms for the Winner Determination Problem in Combinatorial Auctions , 2015, Evolutionary Computation.

[16]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[17]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[18]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[19]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[20]  Funda Samanlioglu,et al.  A hybrid random-key genetic algorithm for a symmetric travelling salesman problem , 2007 .

[21]  Mauricio G. C. Resende,et al.  A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..

[22]  Swaroop Darbha,et al.  A transformation for a Heterogeneous, Multiple Depot, Multiple Traveling Salesman Problem , 2009, 2009 American Control Conference.

[23]  Mauricio G. C. Resende,et al.  A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem , 2011, J. Comb. Optim..

[24]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[25]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[26]  Lawrence V. Snyder,et al.  A random-key genetic algorithm for the generalized traveling salesman problem , 2006, Eur. J. Oper. Res..

[27]  Mauricio G. C. Resende,et al.  A biased random-key genetic algorithm for the Steiner triple covering problem , 2012, Optim. Lett..

[28]  Enrique Benavent,et al.  Multi-depot Multiple TSP: a polyhedral study and computational results , 2013, Ann. Oper. Res..

[29]  David Levine,et al.  Application of a hybrid genetic algorithm to airline crew scheduling , 1996, Comput. Oper. Res..

[30]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[31]  Peter Merz,et al.  Embedding a Chained Lin-Kernighan Algorithm into a Distributed Algorithm , 2007, Metaheuristics.

[32]  Daniele Vigo,et al.  The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics , 2011, Transp. Sci..