Calibration of a crop model to irrigated water use using a genetic algorithm

Abstract. Near-term consumption of groundwater for irrigated agriculture in the High Plains Aquifer supports a dynamic bio-socio-economic system, all parts of which will be impacted by a future transition to sustainable usage that matches natural recharge rates. Plants are the foundation of this system and so generic plant models suitable for coupling to representations of other component processes (hydrologic, economic, etc.) are key elements of needed stakeholder decision support systems. This study explores utilization of the Environmental Policy Integrated Climate (EPIC) model to serve in this role. Calibration required many facilities of a fully deployed decision support system: geo-referenced databases of crop (corn, sorghum, alfalfa, and soybean), soil, weather, and water-use data (4931 well-years), interfacing heterogeneous software components, and massively parallel processing (3.8×109 model runs). Bootstrap probability distributions for ten model parameters were obtained for each crop by entropy maximization via the genetic algorithm. The relative errors in yield and water estimates based on the parameters are analyzed by crop, the level of aggregation (county- or well-level), and the degree of independence between the data set used for estimation and the data being predicted.

[1]  Douglas J. Miller,et al.  Recovering Output‐Specific Inputs from Aggregate Input Data: A Generalized Cross‐Entropy Approach , 1998 .

[2]  John W. Nicklow,et al.  Multi-objective automatic calibration of SWAT using NSGA-II , 2007 .

[3]  K. Sasaki An empirical analysis of linear aggregation problems: The case of investment behavior in Japanese firms , 1978 .

[4]  R. J. Bula,et al.  Morphological Characteristics of Alfalfa Plants Grown at Several Temperatures 1 , 1972 .

[5]  Gary W. Fick,et al.  Simple Simulation Models for Yield Prediction Applied to Alfalfa in the Northeast 1 , 1984 .

[6]  Chunhong Chen,et al.  Parameter optimization for growth model of greenhouse crop using genetic algorithms , 2009, Appl. Soft Comput..

[7]  P. Keeling,et al.  Heat Stress during Grain Filling in Maize: Effects on Kernel Growth and Metabolism , 1999 .

[8]  James W. Jones,et al.  Modeling the Occurrence of Reproductive Stages after Flowering for Four Soybean Cultivars , 1994 .

[9]  A. Taylor,et al.  Growth of lucerne (Medicago sativa, L.) in response to frequency of irrigation and gypsum application on a heavy clay soil , 1986, Irrigation Science.

[10]  E. Bernard,et al.  The Analytic Element Method and supporting GIS geodatabase model , 2005 .

[11]  Ronald D. Lacewell,et al.  Simulating Corn Yield Response to Irrigation Timings: Validation of the Epic Model , 1992 .

[12]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[13]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[14]  Xiaoying Yang,et al.  Groundwater response to changing water‐use practices in sloping aquifers using convolution of transient response functions , 2009 .

[15]  T. Arkebauer,et al.  Hybrid-maize—a maize simulation model that combines two crop modeling approaches , 2004 .

[16]  Ayse Irmak,et al.  Evaluating methods for simulating soybean cultivar responses using cross validation. , 2000 .

[17]  Stephen M. Welch,et al.  ESTIMATING SOYBEAN MODEL GENETIC COEFFICIENTS FROM PRIVATE–SECTOR VARIETY PERFORMANCE TRIAL DATA , 2002 .

[18]  A. Zellner On the Aggregation Problem: A New Approach to a Troublesome Problem , 1969 .

[19]  L. H. Allen,et al.  Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum (Sorghum bicolor (L.) Moench) are more severe at elevated carbon dioxide due to higher tissue temperatures , 2006 .

[20]  Bruce R. Beattie,et al.  A Comparison of Alternative Crop Response Models , 1990 .

[21]  Xiaoying Yang,et al.  Data model for system conceptualization in groundwater studies , 2010, Int. J. Geogr. Inf. Sci..

[22]  J. Kiniry,et al.  Maize yield potential: critical processes and simulation modeling in a high-yielding environment , 2004 .

[23]  Z. Griliches,et al.  Is aggregation necessarily bad , 1960 .

[24]  S. Welch,et al.  A software system for scalable parameter estimation on clusters , 2007 .

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  G. Jolliff,et al.  Effects of Night Temperature on Dry Matter Partitioning and Seed Growth of Indeterminate Field‐Grown Soybean1 , 1984 .

[27]  Raghavan Srinivasan,et al.  Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model , 2009 .

[28]  David R Steward,et al.  The Synergistic Powers of AEM and GIS Geodatabase Models in Water Resources Studies , 2006, Ground water.

[29]  E. F. Viglizzo,et al.  The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas , 2001 .

[30]  L. Gibson,et al.  Influence of day and night temperature on soybean seed yield , 1996 .

[31]  Quan J. Wang,et al.  Using genetic algorithms to optimise model parameters , 1997 .

[32]  R. C. Muchow Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment I. Yield potential , 1989 .

[33]  If Wardlaw,et al.  The effect of temperature on kernel development in cereals , 1978 .

[34]  C. Stöckle,et al.  CropSyst, a cropping systems simulation model , 2003 .

[35]  J. Seibert Multi-criteria calibration of a conceptual runoff model using a genetic algorithm , 2000 .

[36]  Rolf Färe,et al.  A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search , 2009, Eur. J. Oper. Res..

[37]  Hongkong,et al.  CERES-Maize : a simulation model of maize growth and development , 2010 .

[38]  L. A. Hunt,et al.  Effects of temperature on primary growth of alfalfa , 1972 .

[39]  M. Pesaran,et al.  Econometric Analysis of Aggregation in the Context of Linear Prediction Models , 1989 .

[40]  Effect of Temperature on Time to Panicle Initiation and Leaf Appearance in Sorghum , 1998 .

[41]  R. C. Muchow,et al.  Radiation Use Efficiency , 1999 .

[42]  Quirino Paris,et al.  The von Liebig Hypothesis , 1992 .

[43]  Sherman Robinson,et al.  Recovering Information from Incomplete or Partial Multisectoral Economic Data , 1994 .

[44]  J. M. Peterson,et al.  Groundwater economics: An object‐oriented foundation for integrated studies of irrigated agricultural systems , 2009 .

[45]  H. Theil,et al.  Linear Aggregation of Economic Relations. , 1955 .

[46]  R. C. Muchow,et al.  Effect of high temperature on grain-growth in field-grown maize. , 1990 .

[47]  E. Bingham,et al.  Dry Matter and Morphological Responses to Temperatures of Alfalfa Strains with Differing Ploidy Levels 1 , 1979 .

[48]  H. van Keulen,et al.  The 'School of de Wit' crop growth simulation models: a pedigree and historical overview. , 1996 .

[49]  M. Cantarero,et al.  Night Temperature at Silking Affects Set in Maize , 1999 .

[50]  James W. Jones,et al.  Modifying the CROPGRO-Soybean Model to Improve Predictions for the Upper Midwest , 2004 .

[51]  R. C. Muchow Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment II. Effect of water deficits , 1989 .

[52]  Luca Bechini,et al.  A preliminary evaluation of the simulation model CropSyst for alfalfa , 2004 .

[53]  G. Hammer,et al.  Genotype-by-Environment Interaction in Grain Sorghum. II. Effects of Temperature and Photoperiod on Ontogeny , 1989 .

[54]  Thomas Engel,et al.  AEGIS/WIN : A computer program for the application of crop simulation models across geographic areas , 1997 .

[55]  J. Dardanelli,et al.  Temperature and water availability effects on radiation and water use efficiencies in alfalfa (Medicago sativa L.) , 2005 .

[56]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[57]  Dale R. Smith,et al.  Influence of Temperature on Seedling Growth and Carbohydrate Composition of Three Alfalfa Cultivars1 , 1970 .

[58]  David R Steward,et al.  Analytic formulation of Cauchy integrals for boundaries with curvilinear geometry , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  James W. Jones,et al.  Using Crop Simulation Models and GIS for Regional Productivity Analysis , 1993 .

[60]  M. Cabelguenne,et al.  Strategies for Limited Irrigations of Maize in Southwestern France – A Modeling Approach , 1995 .

[61]  Graeme L. Hammer,et al.  Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays) , 1998 .

[62]  Joseph Bordogna,et al.  U.S. Engineering: Enabling the Nation's Capacity to Perform , 2003 .

[63]  E. W. Stevens,et al.  Integrated decision making for reservoir, irrigation, and crop management , 1998 .

[64]  Norman J. Rosenberg,et al.  Climate Change Impacts on the Potential Productivity of Corn and Winter Wheat in Their Primary United States Growing Regions , 1999 .

[65]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[66]  J. R. Ellis,et al.  Preferred Irrigation Strategies in Light of Declining Government Support , 1993 .

[67]  J. Ritchie,et al.  Modeling Plant and Soil Systems , 1991 .

[68]  A. Taylor,et al.  Effects of stage of growth, irrigation frequency and gypsum treatment on CO2 exchange of lucerne (Medicago sativa L.) grown on a heavy clay soil , 1986, Irrigation Science.

[69]  W. Easterling,et al.  Paper 2. agricultural impacts of and responses to climate change in the Missouri-Iowa-Nebraska-Kansas (MINK) region , 1993 .

[70]  John R. Williams,et al.  EPIC-erosion/productivity impact calculator: 2. User manual. , 1990 .

[71]  George Bosilca,et al.  Open MPI: A High-Performance, Heterogeneous MPI , 2006, 2006 IEEE International Conference on Cluster Computing.

[72]  Li Zheng,et al.  PGO: A parallel computing platform for global optimization based on genetic algorithm , 2007, Comput. Geosci..

[73]  C. Hays,et al.  Potential production and environmental effects of switchgrass and traditional crops under current and greenhouse-altered climate in the central United States: a simulation study , 2000 .

[74]  A. Lansink,et al.  Inter-Firm and Intra-Firm Efficiency Measures , 2001 .

[75]  Chuntian Cheng,et al.  Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure , 2006 .

[76]  D. Kumar,et al.  Irrigation planning using Genetic Algorithms , 2004 .

[77]  Peter Berck,et al.  Reconciling the von Liebig and Differentiable Crop Production Functions , 1990 .

[78]  I. Warrington,et al.  Corn Growth Response to Temperature: Rate and Duration of Lead Emergence , 1989 .

[79]  R. Howitt,et al.  Reconstructing Disaggregate Production Functions , 2002 .

[80]  D. L. Thomas,et al.  Evaluation of on-farm irrigation applications using the simulation model EPIC , 2005, Irrigation Science.

[81]  Amos Golan,et al.  Estimating the Size Distribution of Firms Using Government Summary Statistics , 1995 .

[82]  John R. Williams,et al.  EPIC-erosion/productivity impact calculator: 1. Model documentation. , 1990 .

[83]  S. Goldfeld,et al.  Estimation and prediction from aggregate data when aggregates are measured more accurately than their components , 1974 .