WO3/TiO2 core–shell nanostructure for high performance energy-saving smart windows

[1]  Zhong Lin Wang,et al.  Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator , 2013, Nanotechnology.

[2]  T. Aida,et al.  Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers , 2013, Nature Communications.

[3]  B. Pan,et al.  High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets , 2013, Scientific Reports.

[4]  N. Vuong,et al.  Electrochromic properties of porous WO3–TiO2 core–shell nanowires , 2013 .

[5]  Hongzhi Wang,et al.  Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance , 2013 .

[6]  Haifeng Zhao,et al.  Improved field emission performance of carbon nanotube by introducing copper metallic particles , 2011, Nanoscale research letters.

[7]  Wilson A. Smith,et al.  Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting , 2011 .

[8]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[9]  Xiuli Wang,et al.  Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance , 2011 .

[10]  M. Kolář,et al.  A study into the self-cleaning surface properties—The photocatalytic decomposition of oleic acid , 2011 .

[11]  Wilson A. Smith,et al.  Superior photocatalytic performance by vertically aligned core–shell TiO2/WO3 nanorod arrays , 2009 .

[12]  A. A. Joraid Comparison of electrochromic amorphous and crystalline electron beam deposited WO3 thin films , 2009 .

[13]  M. Miyauchi Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. , 2008, Physical chemistry chemical physics : PCCP.

[14]  N. Keller,et al.  Mesostructured Anatase TiO2 for Visible Light and UV Photocatalysis With Confinement Effect and Semiconductor Coupling , 2008 .

[15]  P. Schmuki,et al.  Enhanced electrochromic properties of self-organized nanoporous WO3 , 2008 .

[16]  X. Lin,et al.  Heterojunction semiconductor SnO2/SrNb2O6 with an enhanced photocatalytic activity: The significance of chemically bonded interface , 2008 .

[17]  Masahiro Miyauchi,et al.  Visible light induced super-hydrophilicity on single crystalline TiO2nanoparticles and WO3 layered thin films , 2008 .

[18]  A. Mills,et al.  Current and possible future methods of assessing the activities of photocatalyst films , 2007 .

[19]  S. Woo,et al.  Photocatalytic behaviors of transition metal ion doped TiO2 powder synthesized by mechanical alloying , 2007 .

[20]  A. Mills,et al.  Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films , 2006 .

[21]  P. Patil,et al.  Electrochromic properties of spray deposited TiO2-doped WO3 thin films , 2005 .

[22]  Ivan P. Parkin,et al.  Self-cleaning coatings , 2005 .

[23]  R. Santos,et al.  Enhancing the performance of an electrochromic device by template synthesis of the active layers , 2004 .

[24]  K. Hashimoto,et al.  Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property , 2004 .

[25]  Jin Zhai,et al.  Super‐Hydrophobic Surfaces: From Natural to Artificial , 2002 .

[26]  Michael Grätzel,et al.  Materials science: Ultrafast colour displays , 2001, Nature.

[27]  A. Fujishima,et al.  PHOTODECOMPOSITION OF A LANGMUIR-BLODGETT FILM OF STEARIC ACID ON TIO2 FILM OBSERVED BY IN SITU ATOMIC FORCE MICROSCOPY AND FT-IR , 1997 .

[28]  Adam Heller,et al.  Photooxidative self-cleaning transparent titanium dioxide films on glass , 1995 .

[29]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .