Structure, thermodynamics, and orientational correlations of the nematogenic hard ellipse fluid from the Percus-Yevick equation

The Percus-Yevick equation is solved for a fluid of hard ellipses in two dimensions. The correlation functions, including the orientation correlation function, are expanded in a set of orthogonal functions and the expansion coefficients are obtained by an iterative algorithm. Pressure and compressibility values are also determined. Orientational ordering is observed, but the isotropic-nematic phase transition observed by Vieillard-Baron (1972, J. chem. Phys., 56, 4729) is not.

[1]  William H. Press,et al.  Numerical recipes , 1990 .

[2]  G. Patey,et al.  The solution of the reference hypernetted-chain approximation for fluids of hard spheres with dipoles and quadrupoles , 1986 .

[3]  G. Patey,et al.  The solution of the reference hypernetted-chain approximation for Stockmayer fluids , 1985 .

[4]  Frenkel,et al.  Evidence for algebraic orientational order in a two-dimensional hard-core nematic. , 1985, Physical review. A, General physics.

[5]  G. Chester,et al.  Long-range orientational order in two-dimensional liquid crystals , 1983 .

[6]  F. Lado Integral equations for fluids of linear molecules: III. Orientational ordering , 1982 .

[7]  F. Lado Integral equations for fluids of linear molecules: II. Hard dumbell solutions , 1982 .

[8]  F. Lado Integral equations for fluids of linear molecules , 1982 .

[9]  W. Gelbart Molecular theory of nematic liquid crystals , 1982 .

[10]  D. Lévesque,et al.  Theoretical determination of the dielectric constant of a two dimensional dipolar fluid , 1981 .

[11]  G. R. Luckhurst,et al.  Computer Simulation Studies of Anisotropic Systems, III. Two-Dimensional Nematic Liquid Crystals , 1980 .

[12]  J. D. Talman,et al.  Numerical Fourier and Bessel transforms in logarithmic variables , 1978 .

[13]  S. Chakravarty,et al.  Short-range correlations in two-dimensional liquid crystals , 1975 .

[14]  T. Boublı́k Two-dimensional convex particle liquid , 1975 .

[15]  Jacques Vieillard‐Baron,et al.  Phase Transitions of the Classical Hard‐Ellipse System , 1972 .

[16]  J. P. Straley,et al.  Liquid Crystals in Two Dimensions , 1971 .

[17]  W. Steele,et al.  Statistical Mechanics of Linear Molecules. VI. Solutions of the Percus–Yevick Integral Equation for a Hard‐Core Model , 1971 .

[18]  W. Steele,et al.  Statistical Mechanics of Linear Molecules. V. Pressure Virial Coefficients for the Hard‐Core Model , 1970 .

[19]  Fred Lado,et al.  Equation of State of the Hard‐Disk Fluid from Approximate Integral Equations , 1968 .

[20]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[21]  W. G. Hoover,et al.  Fifth and Sixth Virial Coefficients for Hard Spheres and Hard Disks , 1964 .

[22]  W. Steele Statistical Mechanics of Nonspherical Molecules , 1963 .

[23]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[24]  G. Patey,et al.  A theoretical study of simple liquid crystal models , 1987 .

[25]  G. Patey,et al.  The solution of the hypernetted‐chain approximation for fluids of nonspherical particles. A general method with application to dipolar hard spheres , 1985 .

[26]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[27]  A. Saupe,et al.  Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II , 1960 .

[28]  A. Einstein Essays in Physics , 1950 .