Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity

Fluctuations in brain on-going activity can be used to reveal its intrinsic functional organization. To mine this information, we give a new hierarchical probabilistic model for brain activity patterns that does not require an experimental design to be specified. We estimate this model in the dictionary learning framework, learning simultaneously latent spatial maps and the corresponding brain activity time-series. Unlike previous dictionary learning frameworks, we introduce an explicit difference between subject-level spatial maps and their corresponding population-level maps, forming an atlas. We give a novel algorithm using convex optimization techniques to solve efficiently this problem with non-smooth penalties well-suited to image denoising. We show on simulated data that it can recover population-level maps as well as subject specificities. On resting-state fMRI data, we extract the first atlas of spontaneous brain activity and show how it defines a subject-specific functional parcellation of the brain in localized regions.

[1]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[2]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[3]  Francis R. Bach,et al.  Sparse probabilistic projections , 2008, NIPS.

[4]  S. Geer,et al.  The Smooth-Lasso and other ℓ1+ℓ2-penalized methods , 2011 .

[5]  S. Geer,et al.  The Smooth-Lasso and other ℓ1+ℓ2-penalized methods , 2011 .

[6]  Nicholas Ayache,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007, 10th International Conference, Brisbane, Australia, October 29 - November 2, 2007, Proceedings, Part I , 2007, MICCAI.

[7]  Gaël Varoquaux,et al.  Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling , 2010, MICCAI.

[8]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[9]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[10]  Julien Mairal,et al.  Network Flow Algorithms for Structured Sparsity , 2010, NIPS.

[11]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[12]  Mohamed Hebiri,et al.  The Smooth-Lasso and other $\ell_1+\ell_2$-penalized methods , 2010, 1003.4885.

[13]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[14]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[15]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[16]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[17]  Francis R. Bach,et al.  Structured Sparse Principal Component Analysis , 2009, AISTATS.

[18]  Joachim M. Buhmann,et al.  Expectation-maximization for sparse and non-negative PCA , 2008, ICML '08.

[19]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[20]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[21]  Polina Golland,et al.  Detection of Spatial Activation Patterns as Unsupervised Segmentation of fMRI Data , 2007, MICCAI.

[22]  J. Kettenring,et al.  Canonical Analysis of Several Sets of Variables , 2022 .

[23]  James A. McHugh,et al.  Algorithmic Graph Theory , 1986 .

[24]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[25]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[26]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[27]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[28]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[29]  Nassir Navab,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part III , 2010, MICCAI.

[30]  Jean-Baptiste Poline,et al.  ICA-based sparse features recovery from fMRI datasets , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[31]  I Daubechies,et al.  Independent component analysis for brain fMRI does not select for independence , 2009 .