Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information

Several contributions to the hydrological literature have brought into question the continued usefulness of the classical paradigm for hydrologic model calibration. With the growing popularity of sophisticated “physically based” watershed models (e.g., land-surface hydrology and hydrochemical models) the complexity of the calibration problem has been multiplied many fold. We disagree with the seemingly widespread conviction that the model calibration problem will simply disappear with the availability of more and better field measurements. This paper suggests that the emergence of a new and more powerful model calibration paradigm must include recognition of the inherent multiobjective nature of the problem and must explicitly recognize the role of model error. The results of our preliminary studies are presented. Through an illustrative case study we show that the multiobjective approach is not only practical and relatively simple to implement but can also provide useful information about the limitations of a model.

[1]  E. L. Peck,et al.  Catchment modeling and initial parameter estimation for the National Weather Service River Forecast System , 1976 .

[2]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[3]  Soroosh Sorooshian,et al.  A New Optimization Strategy for Global Inverse Solution of Hydrologic Models , 1994 .

[4]  M. H. Diskin,et al.  A procedure for the selection of objective functions for hydrologic simulation models , 1977 .

[5]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[6]  B. Troutman Errors and Parameter Estimation in Precipitation‐Runoff Modeling: 1. Theory , 1985 .

[7]  Gerd Graßhoff,et al.  Theory and Observation , 1990 .

[8]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[9]  Ambrose Goicoechea,et al.  Multiobjective programing in watershed management: A study of the Charleston Watershed , 1976 .

[10]  P. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 2. Applications and results , 1980 .

[11]  Peter K. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty , 1980 .

[12]  Lotfi A. Zadeh,et al.  Optimality and non-scalar-valued performance criteria , 1963 .

[13]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[14]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[15]  Stephen A. Marglin Public Investment Criteria , 1967 .

[16]  George Kuczera,et al.  On the relationship between the reliability of parameter estimates and hydrologic time series data used in calibration , 1982 .

[17]  Brent M. Troutman,et al.  Errors and Parameter Estimation in Precipitation‐Runoff Modeling: 2. Case Study , 1985 .

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  F. W. Gembicki,et al.  Vector optimization for control with performance and parameter sensitivity indices , 1974 .

[20]  C. T. Haan,et al.  MULTIOBJECNVE PARAMETER ESTIMATION FOR HYDROLOGIC MODELS—^MULTIOBJECTIVE PROGRAMMING , 1991 .

[21]  Gert A. Schultz,et al.  Reservoir Management Rules Derived With the Aid of Multiple Objective Decision Making Techniques , 1992 .

[22]  Patrice Ogou Yapo A multiobjective global optimization algorithm with application to calibration of hydrologic models , 1996 .

[23]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[24]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[25]  Soroosh Sorooshian,et al.  The relationship between data and the precision of parameter estimates of hydrologic models , 1985 .

[26]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[27]  K. Hipel Multiple objective decision making in water resources , 1992 .

[28]  Richard P. Hooper,et al.  A multisignal automatic calibration methodology for hydrochemical models: A case study of the Birkenes Model , 1988 .

[29]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[30]  A. R. Rao,et al.  Critical Duration Analysis And Parameter Estimation In Illudas , 1983 .

[31]  G. Kuczera Improved parameter inference in catchment models: 2. Combining different kinds of hydrologic data and testing their compatibility , 1983 .

[32]  George Kuczera,et al.  On the validity of first-order prediction limits for conceptual hydrologic models , 1988 .

[33]  Y. Haimes,et al.  Multiobjectives in water resource systems analysis: The Surrogate Worth Trade Off Method , 1974 .

[34]  G. V. Straten,et al.  Maximum Likelihood Estimation of Parameters and Uncertainty in Phytoplankton Models , 1983 .

[35]  Larry Brazil,et al.  Multilevel calibration strategy for complex hydrologic simulation models , 1988 .

[36]  C. T. Haan Statistical modeling in hydrology: by Robin T. Clarke, Wiley, Chichester, 1994, XII+412 pp., hardcover, £45, ISBN 0-471-95016-5 , 1995 .

[37]  Peter K. Kitanidis,et al.  Adaptive filtering through detection of isolated transient errors in rainfall‐runoff models , 1980 .

[38]  G. Kuczera Efficient subspace probabilistic parameter optimization for catchment models , 1997 .

[39]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[40]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[41]  S. Sorooshian Parameter estimation of rainfall-runoff models with heteroscedastic streamflow errors — The noninformative data case , 1981 .

[42]  Charles H. Luce,et al.  Parameter identification for a runoff model for forest roads , 1994 .

[43]  C. T. Haan,et al.  Multiobjective Parameter Estimation For Hydrologic Models - Weighting Of Errors , 1991 .

[44]  Witold F. Krajewski,et al.  Optimization of Complex Hydrologic Models Using Random Search Methods , 1987 .

[45]  D. A. Jones Statistical analysis of empirical models fitted by optimization , 1983 .

[46]  Karel J. Keesman,et al.  Membership-set estimation using random scanning and principal componet analysis , 1990 .

[47]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[48]  Simon French,et al.  Multi-Objective Decision Analysis with Engineering and Business Applications , 1983 .

[49]  F. T. Sefe,et al.  Variation of model parameter values and sensitivity with type of objective function , 1982 .

[50]  Karel J. Keesman,et al.  Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .

[51]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[52]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[53]  Mark Gershon,et al.  Techniques for multiobjective decision making in systems management , 1986 .

[54]  Yacov Y. Haimes,et al.  Multiobjective optimization in water resources systems : the surrogate worth trade-off method , 1975 .

[55]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[56]  P. D. Hutchinson,et al.  Model Parameter Consistency and Fitting Criteria , 1984 .

[57]  Ferenc Szidarovszky,et al.  A multiobjective optimization model for wine production , 1987 .

[58]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[59]  H. Scholten,et al.  Prediction Uncertainty in an Ecological Model of the Oosterschelde Estuary , 1991 .

[60]  T. Gan,et al.  Automatic Calibration of Conceptual Rainfall-Runoff Models: Optimization Algorithms, Catchment Conditions, and Model Structure , 1996 .

[61]  G. H. Leavesley,et al.  Precipitation-runoff modeling system; user's manual , 1983 .

[62]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[63]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .