Scaling down DNA circuits with competitive neural networks

DNA has proved to be an exquisite substrate to compute at the molecular scale. However, nonlinear computations (such as amplification, comparison or restoration of signals) remain costly in term of strands and are prone to leak. Kim et al. showed how competition for an enzymatic resource could be exploited in hybrid DNA/enzyme circuits to compute a powerful nonlinear primitive: the winner-take-all (WTA) effect. Here, we first show theoretically how the nonlinearity of the WTA effect allows the robust and compact classification of four patterns with only 16 strands and three enzymes. We then generalize this WTA effect to DNA-only circuits and demonstrate similar classification capabilities with only 23 strands.

[1]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[2]  E. Winfree,et al.  Construction of an in vitro bistable circuit from synthetic transcriptional switches , 2006, Molecular systems biology.

[3]  Y. Rondelez Competition for catalytic resources alters biological network dynamics. , 2012, Physical review letters.

[4]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[5]  D. Stefanovic,et al.  Training a molecular automaton to play a game. , 2010, Nature nanotechnology.

[6]  Amina A. Qutub,et al.  Multiplexed in situ immunofluorescence using dynamic DNA complexes. , 2012, Angewandte Chemie.

[7]  Michael R. Diehl,et al.  Multiplexed and Reiterative Fluorescence Labeling via DNA Circuitry , 2010, Bioconjugate chemistry.

[8]  Yaakov Benenson,et al.  Biocomputers: from test tubes to live cells. , 2009, Molecular bioSystems.

[9]  Françoise Remacle,et al.  Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates , 2012, Proceedings of the National Academy of Sciences.

[10]  B. Gold,et al.  A Comparison of Hamming and Hopfield Neural Nets for Pattern Classification , 1987 .

[11]  Erik Winfree,et al.  DNA as a universal substrate for chemical kinetics , 2009, Proceedings of the National Academy of Sciences.

[12]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[13]  Y. Sakai,et al.  Programming an in vitro DNA oscillator using a molecular networking strategy , 2011, Molecular systems biology.

[14]  Luca Cardelli,et al.  Abstractions for DNA circuit design , 2011, Journal of The Royal Society Interface.

[15]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[16]  E. Szathmáry The origin of replicators and reproducers , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[18]  A. Turberfield,et al.  Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. , 2010, Angewandte Chemie.

[19]  利久 亀井,et al.  California Institute of Technology , 1958, Nature.

[20]  E. Winfree,et al.  Synthetic in vitro transcriptional oscillators , 2011, Molecular systems biology.

[21]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[22]  Matthew R. Lakin,et al.  A generic abstract machine for stochastic process calculi , 2010, CMSB '10.

[23]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[24]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[25]  A. Vologodskii,et al.  The kinetics of oligonucleotide replacements. , 2000, Journal of molecular biology.

[26]  Itamar Willner,et al.  pH-programmable DNA logic arrays powered by modular DNAzyme libraries. , 2012, Nano letters.

[27]  J. Elezgaray,et al.  Cooperativity in the annealing of DNA origamis. , 2011, The Journal of chemical physics.

[28]  Santosh S. Venkatesh,et al.  The capacity of the Hopfield associative memory , 1987, IEEE Trans. Inf. Theory.

[29]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[30]  Teruo Fujii,et al.  Computing with competition in biochemical networks. , 2012, Physical review letters.

[31]  Matthew R. Lakin,et al.  Bioinformatics Applications Note Systems Biology Visual Dsd: a Design and Analysis Tool for Dna Strand Displacement Systems , 2022 .

[32]  G. F. Joyce,et al.  Niche partitioning in the coevolution of 2 distinct RNA enzymes , 2009, Proceedings of the National Academy of Sciences.

[33]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[34]  Yohei Yokobayashi,et al.  Emergence of symbiosis in peptide self-replication through a hypercyclic network , 1997, Nature.

[35]  Erik Winfree,et al.  Neural Network Computation by In Vitro Transcriptional Circuits , 2004, NIPS.

[36]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[37]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[38]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[39]  Masahiro Takinoue,et al.  RTRACS: a modularized RNA-dependent RNA transcription system with high programmability. , 2011, Accounts of chemical research.

[40]  Jonathan Bath,et al.  Combinatorial displacement of DNA strands: application to matrix multiplication and weighted sums. , 2013, Angewandte Chemie.

[41]  P. Hsieh,et al.  The kinetics of spontaneous DNA branch migration. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Mohamad H. Hassoun,et al.  The Hamming associative memory and its relation to the exponential capacity DAM , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[43]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[44]  M. Elowitz,et al.  Synthetic Biology: Integrated Gene Circuits , 2011, Science.

[45]  Teruo Fujii,et al.  Predator-prey molecular ecosystems. , 2013, ACS nano.

[46]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[47]  Luca Cardelli,et al.  Design and analysis of DNA strand displacement devices using probabilistic model checking , 2012, Journal of The Royal Society Interface.

[48]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[49]  I. Willner,et al.  Coherent activation of DNA tweezers: a "SET-RESET" logic system. , 2009, Angewandte Chemie.

[50]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[51]  Teruo Fujii,et al.  Bottom-up construction of in vitro switchable memories , 2012, Proceedings of the National Academy of Sciences.

[52]  J. Kjems,et al.  A DNA tile actuator with eleven discrete states. , 2011, Angewandte Chemie.

[53]  Jonathan Bath,et al.  Reversible logic circuits made of DNA. , 2011, Journal of the American Chemical Society.

[54]  Lulu Qian,et al.  A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits , 2008, DNA.

[55]  Michael L. Manapat,et al.  Spontaneous network formation among cooperative RNA replicators , 2012, Nature.

[56]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[57]  Ehud Shapiro,et al.  Molecular implementation of simple logic programs. , 2009, Nature nanotechnology.

[58]  Teruo Fujii,et al.  Molecular computations with competitive neural networks that exploit linear and nonlinear kinetics , 2012, Turing-100.

[59]  Bernard Yurke,et al.  Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions , 2012, Journal of The Royal Society Interface.

[60]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[61]  Wolfgang Maass,et al.  On the Computational Power of Winner-Take-All , 2000, Neural Computation.

[62]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[63]  Dongsheng Liu,et al.  A responsive hidden toehold to enable controllable DNA strand displacement reactions. , 2011, Angewandte Chemie.

[64]  John Lazzaro,et al.  Winner-Take-All Networks of O(N) Complexity , 1988, NIPS.

[65]  Akira Suyama,et al.  Experiments and simulation models of a basic computation element of an autonomous molecular computing system. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[67]  Michael C Jewett,et al.  Synthetic in vitro circuits. , 2012, Current opinion in chemical biology.

[68]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[69]  Michael R. Diehl,et al.  Configuring robust DNA strand displacement reactions for in situ molecular analyses , 2011, Nucleic acids research.

[70]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[71]  David Yu Zhang,et al.  Cooperative hybridization of oligonucleotides. , 2011, Journal of the American Chemical Society.

[72]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.