Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities

The forests of Amazonia are among the most biodiverse on Earth, yet accurately quantifying how species composition varies through space (i.e., beta‐diversity) remains a significant challenge. Here, we use high‐fidelity airborne imaging spectroscopy from the Carnegie Airborne Observatory to quantify a key component of beta‐diversity, the distance decay in species similarity through space, across three landscapes in Northern Peru. We then compared our derived distance decay relationships to theoretical expectations obtained from a Poisson Cluster Process, known to match well with empirical distance decay relationships at local scales. We used an unsupervised machine learning approach to estimate spatial turnover in species composition from the imaging spectroscopy data. We first validated this approach across two landscapes using an independent dataset of forest composition in 49 forest census plots (0.1–1.5 ha). We then applied our approach to three landscapes, which together represented terra firme clay forest, seasonally flooded forest and white‐sand forest. We finally used our approach to quantify landscape‐scale distance decay relationships and compared these with theoretical distance decay relationships derived from a Poisson Cluster Process. We found a significant correlation of similarity metrics between spectral data and forest plot data, suggesting that beta‐diversity within and among forest types can be accurately estimated from airborne spectroscopic data using our unsupervised approach. We also found that estimated distance decay in species similarity varied among forest types, with seasonally flooded forests showing stronger distance decay than white‐sand and terra firme forests. Finally, we demonstrated that distance decay relationships derived from the theoretical Poisson Cluster Process compare poorly with our empirical relationships. Synthesis. Our results demonstrate the efficacy of using high‐fidelity imaging spectroscopy to estimate beta‐diversity and continuous distance decay in lowland tropical forests. Furthermore, our findings suggest that distance decay relationships vary substantially among forest types, which has important implications for conserving these valuable ecosystems. Finally, we demonstrate that a theoretical Poisson Cluster Process poorly predicts distance decay in species similarity as conspecific aggregation occurs across a range of nested scales within larger landscapes.

[1]  O. Phillips,et al.  Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta‐diversity , 2018 .

[2]  Nunzio Knerr,et al.  A comparison of network and clustering methods to detect biogeographical regions , 2018 .

[3]  Vipin Kumar,et al.  High spatiotemporal resolution of river planform dynamics from Landsat: The RivMAP toolbox and results from the Ucayali River , 2017 .

[4]  H. Muller‐Landau,et al.  Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots , 2017, Biodiversity and Conservation.

[5]  Alice Boit,et al.  Resilience of Amazon forests emerges from plant trait diversity , 2016 .

[6]  Gregory P. Asner,et al.  Environmental drivers of tree community turnover in western Amazonian forests , 2016 .

[7]  F. García,et al.  Mapeo de los bosques tipo varillal utilizando imágenes de satélite rapideye en la provincia maynas, loreto, Perú , 2016 .

[8]  Roberta E. Martin,et al.  Large-scale climatic and geophysical controls on the leaf economics spectrum , 2016, Proceedings of the National Academy of Sciences.

[9]  Giles M. Foody,et al.  Satellite remote sensing to monitor species diversity: potential and pitfalls , 2016 .

[10]  Andreas Huth,et al.  Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests? , 2016, Global ecology and biogeography : a journal of macroecology.

[11]  N. Christensen,et al.  White‐sand Ecosystems in Amazonia , 2016 .

[12]  K. Dexter,et al.  Amazonian White‐Sand Forests Show Strong Floristic Links with Surrounding Oligotrophic Habitats and the Guiana Shield , 2016 .

[13]  O. Phillips,et al.  Low Phylogenetic Beta Diversity and Geographic Neo‐endemism in Amazonian White‐sand Forests , 2016 .

[14]  D. Edwards,et al.  How Should Beta-Diversity Inform Biodiversity Conservation? , 2016, Trends in ecology & evolution.

[15]  Roberta E. Martin,et al.  Mesoscale assessment of changes in tropical tree species richness across a bioclimatic gradient in Panama using airborne imaging spectroscopy , 2015 .

[16]  Edward T. A. Mitchard,et al.  The distribution and amount of carbon in the largest peatland complex in Amazonia , 2014 .

[17]  A. Di Fiore,et al.  Are all species necessary to reveal ecologically important patterns? , 2014, Ecology and evolution.

[18]  Jean-Baptiste Féret,et al.  Microtopographic controls on lowland Amazonian canopy diversity from imaging spectroscopy. , 2014, Ecological applications : a publication of the Ecological Society of America.

[19]  J. Féret,et al.  Mapping tropical forest canopy diversity using high‐fidelity imaging spectroscopy. , 2014, Ecological applications : a publication of the Ecological Society of America.

[20]  J. Chambers,et al.  Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest , 2014, PloS one.

[21]  Nathan J B Kraft,et al.  Environmental factors predict community functional composition in Amazonian forests , 2014 .

[22]  T. Haugaasen,et al.  Effects of hydroperiod and substrate properties on tree alpha diversity and composition in Amazonian floodplain forests , 2014, Plant Ecology.

[23]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[24]  Stephen P Hubbell,et al.  Tropical rain forest conservation and the twin challenges of diversity and rarity , 2013, Ecology and evolution.

[25]  Gregory Asner,et al.  Estimating Vegetation Beta Diversity from Airborne Imaging Spectroscopy and Unsupervised Clustering , 2013, Remote. Sens..

[26]  T. R. Baker,et al.  Análisis de la composición florística de los bosques de Jenaro Herrera, Loreto, Perú , 2013 .

[27]  Roberta E. Martin,et al.  Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion , 2012 .

[28]  Gregory Asner,et al.  Use of Landsat and SRTM Data to Detect Broad-Scale Biodiversity Patterns in Northwestern Amazonia , 2012, Remote. Sens..

[29]  Maria Knadel,et al.  Environment versus dispersal in the assembly of western Amazonian palm communities , 2012 .

[30]  Kalle Ruokolainen,et al.  Geological control of floristic composition in Amazonian forests , 2011, Journal of biogeography.

[31]  O. Phillips,et al.  ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data , 2011 .

[32]  L. Blanc,et al.  Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests , 2011 .

[33]  F. Wittmann,et al.  A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands , 2011, Wetlands.

[34]  S. Hubbell The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) , 2011 .

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  N. Pitman,et al.  A Floristic Study of the White-Sand Forests of Peru1 , 2010 .

[37]  William F. Laurance,et al.  Multi-scale comparisons of tree composition in Amazonian terra firme forests , 2009 .

[38]  Yadvinder Malhi,et al.  Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. , 2009 .

[39]  P. Stevenson,et al.  Distance Decay of Tree Species Similarity in Protected Areas on Terra Firme Forests in Colombian Amazonia , 2009 .

[40]  David Kenfack,et al.  A general framework for the distance–decay of similarity in ecological communities , 2008, Ecology letters.

[41]  S. Thessler,et al.  Remote sensing of floristic patterns in the lowland rain forest landscape , 2008 .

[42]  D. Rocchini Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery , 2007 .

[43]  Thorsten Wiegand,et al.  Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. , 2007, Ecology.

[44]  O. Phillips,et al.  The RAINFOR database: monitoring forest biomass and dynamics , 2007 .

[45]  Duccio Rocchini,et al.  Distance decay in spectral space in analysing ecosystem β‐diversity , 2007 .

[46]  Robert I. McDonald,et al.  The distance decay of similarity in ecological communities , 2007 .

[47]  Roberta E. Martin,et al.  Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems , 2007 .

[48]  G. Zárate,et al.  Floración y Fructificación de plantas leñosas en bosques de arena blanca y de suelo arcilloso en la Amazonía Peruana , 2006 .

[49]  O. Phillips,et al.  Continental-scale patterns of canopy tree composition and function across Amazonia , 2006, Nature.

[50]  F. Wittmann,et al.  Tree species composition and diversity gradients in white‐water forests across the Amazon Basin , 2006 .

[51]  Roosevelt García-Villacorta,et al.  CLASIFICACIÓN DE BOSQUES SOBRE ARENA BLANCA DE LA ZONA RESERVADA ALLPAHUAYO-MISHANA , 2006 .

[52]  Kati J. Salovaara,et al.  Classification of Amazonian primary rain forest vegetation using Landsat ETM+ satellite imagery , 2005 .

[53]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[54]  F. Wittmann,et al.  The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession , 2004 .

[55]  S L Lewis,et al.  Pattern and process in Amazon tree turnover, 1976-2001. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  O. Phillips,et al.  Efficient plot-based floristic assessment of tropical forests , 2003, Journal of Tropical Ecology.

[57]  Oliver L. Phillips,et al.  Habitat association among Amazonian tree species: a landscape‐scale approach , 2003 .

[58]  Kalle Ruokolainen,et al.  LINKING FLORISTIC PATTERNS WITH SOIL HETEROGENEITY AND SATELLITE IMAGERY IN ECUADORIAN AMAZONIA , 2003 .

[59]  Kalle Ruokolainen,et al.  Dispersal, Environment, and Floristic Variation of Western Amazonian Forests , 2003, Science.

[60]  Jérôme Chave,et al.  A Spatially Explicit Neutral Model of β-Diversity in Tropical Forests , 2002 .

[61]  Thomas Wohlgemuth,et al.  Quantitative tools for perfecting species lists , 2002 .

[62]  Stephen P. Hubbell,et al.  Beta-Diversity in Tropical Forest Trees , 2002, Science.

[63]  Gustav Nebel,et al.  A review of Peruvian flood plain forests : ecosystems, inhabitants and resource use , 2001 .

[64]  J. Vanclay,et al.  Structure and floristic composition of flood plain forests in the Peruvian Amazon: II. The understorey of restinga forests , 2001 .

[65]  J. Vanclay,et al.  Structure and floristic composition of flood plain forests in the Peruvian Amazon: I. Overstorey , 2001 .

[66]  J. Plotkin,et al.  Species-area curves, spatial aggregation, and habitat specialization in tropical forests. , 2000, Journal of theoretical biology.

[67]  S. Hubbell,et al.  Spatial patterns in the distribution of tropical tree species. , 2000, Science.

[68]  O. Phillips,et al.  Allpahuayo: floristics, structure, and dynamics of a high-diversity forest in Amazonian Peru. , 2000 .

[69]  P. White,et al.  The distance decay of similarity in biogeography and ecology , 1999 .

[70]  S. Levin The problem of pattern and scale in ecology , 1992 .

[71]  R. Kalliola,et al.  River types, site evolution and successional vegetation patterns in Peruvian Amazonia , 1992 .

[72]  M. Räsänen,et al.  Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru , 1992, Geological Magazine.

[73]  J. Dumont,et al.  Morphostructural provinces and neotectonics in the Amazonian lowlands of Peru , 1991 .

[74]  D. Freitas,et al.  Geographical aspects of forested wetlands in the lower Ucayali, Peruvian Amazonia , 1990 .

[75]  J. Dumont,et al.  Wetland and upland forest ecosystems in Peruvian Amazonia: Plant species diversity in the light of some geological and botanical evidence , 1990 .

[76]  P. Coley,et al.  River dynamics and the diversity of Amazon lowland forest , 1986, Nature.

[77]  A. Gentry,et al.  Patterns of neotropical plant species diversity. , 1982 .