Spider toxin (JSTX) on the glutamate synapse.

A new neurotoxin (JSTX) was separated from spider (Nephila clavata, Joro spider) venom. JSTX irreversibly suppressed the excitatory postsynaptic potential (EPSP) and the glutamate potential in the lobster neuromuscular junction with high degree of specificity. The threshold concentration for suppressing EPSPs corresponds to a small fraction of the toxin in a venom gland, roughly estimated as low as 10(-10) M/l. 10(-10) M/l. In the giant synapse of squid stellate ganglion JSTX suppressed EPSPs without affecting the antidromic response. Glutamate-induced membrane depolarization was blocked by JSTX. In mammalian brain slice preparation, JSTX suppressed the orthodromic spike response but failed to affect on the antidromic spike in the hippocampal pyramidal neuron of CA1 and CA3 region. The above results strongly support the view that the squid giant synapse and synapses in the hippocampal pyramidal neuron are mediated by glutamate.