CentiTrack: Toward Centimeter-Level Passive Gesture Tracking With Commodity WiFi

Gesture awareness plays a crucial role in promoting human-computer interface. Previous works either depend on customized hardware or need a priori learning of wireless signal patterns, facing downsides in terms of the privacy concern, availability and reliability. In this paper, we propose CentiTrack, the first centimeter-level passive gesture tracking system that works with only three commodityWiFi devices, without any extra hardware modifications or wearable sensors. To this end, we first identify the Channel State Information (CSI) measurement error sources in the physical layer process, and then denoise CSI by the complex ratio between adjacent antennas. Principal Component Analysis (PCA) is further adopted to separate the reflected signals from noises. Benchmark experiments are conducted to verify that the phase changes of denoised CSI are proportional to the length changes of dynamic path reflected off the hand. In addition, we adopt the Multiple Signal Classification (MUSIC) algorithm to estimate the Angle-of-Arrivals (AoAs) of dynamic paths, and then locate the initial position of hands with triangulation. We also propose a novel static componnets elimination algorithm for tracking correction by eliminating the components unrelated to motion. A prototype of CentiTrack is fully realized and evaluated in various real scenarios. Extensive experiments show that CentiTrack is superior in terms of tracking accuracy, sensing range and device cost, compared with the state-of-the-arts.

[1]  Sachin Katti,et al.  Position Tracking for Virtual Reality Using Commodity WiFi , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Paul Congdon,et al.  Avoiding multipath to revive inbuilding WiFi localization , 2013, MobiSys '13.

[3]  Agata Brajdic,et al.  Scalable indoor pedestrian localisation using inertial sensing and parallel particle filters , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[4]  Hristo D. Hristov,et al.  Fresnal Zones in Wireless Links, Zone Plate Lenses and Antennas , 2000 .

[5]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3@MobiCom.

[6]  Sheng Tan,et al.  WiFinger: leveraging commodity WiFi for fine-grained finger gesture recognition , 2016, MobiHoc.

[7]  Jianchun Xing,et al.  A Device-Free Number Gesture Recognition Approach Based on Deep Learning , 2016, 2016 12th International Conference on Computational Intelligence and Security (CIS).

[8]  Xiang Li,et al.  Dynamic-MUSIC: accurate device-free indoor localization , 2016, UbiComp.

[9]  Andy Hopper,et al.  A new location technique for the active office , 1997, IEEE Wirel. Commun..

[10]  Sachin Katti,et al.  WiDeo: Fine-grained Device-free Motion Tracing using RF Backscatter , 2015, NSDI.

[11]  Lili Qiu,et al.  CAT: high-precision acoustic motion tracking , 2016, MobiCom.

[12]  Mo Li,et al.  Precise Power Delay Profiling with Commodity Wi-Fi , 2015, IEEE Transactions on Mobile Computing.

[13]  Yubo Yan,et al.  MilliBack: Real-Time Plug-n-Play Millimeter Level Tracking Using Wireless Backscattering , 2019, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[14]  Ernst Bonek,et al.  Number of multipath clusters in indoor MIMO propagation environments , 2004 .

[15]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[16]  Dan Wu,et al.  FarSense , 2019, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[17]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[18]  Jake K. Aggarwal,et al.  Automatic tracking of human motion in indoor scenes across multiple synchronized video streams , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[19]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[20]  Fadel Adib,et al.  Multi-Person Localization via RF Body Reflections , 2015, NSDI.

[21]  Shyamnath Gollakota,et al.  Wi-Fi Gesture Recognition on Existing Devices , 2014, ArXiv.

[22]  Sangki Yun,et al.  Turning a Mobile Device into a Mouse in the Air , 2015, MobiSys.

[23]  Wei Wang,et al.  Device-free gesture tracking using acoustic signals , 2016, MobiCom.

[24]  Rob Miller,et al.  3D Tracking via Body Radio Reflections , 2014, NSDI.

[25]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[26]  Chi Zhang,et al.  Extending Mobile Interaction Through Near-Field Visible Light Sensing , 2015, MobiCom.

[27]  Yunhao Liu,et al.  Widar: Decimeter-Level Passive Tracking via Velocity Monitoring with Commodity Wi-Fi , 2017, MobiHoc.

[28]  Ke Sun,et al.  WiTrace: Centimeter-Level Passive Gesture Tracking Using WiFi Signals , 2018, 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).

[29]  Yu Gu,et al.  PAWS: Passive Human Activity Recognition Based on WiFi Ambient Signals , 2016, IEEE Internet of Things Journal.

[30]  Xinyu Zhang,et al.  mTrack: High-Precision Passive Tracking Using Millimeter Wave Radios , 2015, MobiCom.

[31]  Sachin Katti,et al.  Demo: Position Tracking for Virtual Reality Using Commodity WiFi , 2017, MobiCom.

[32]  Sachin Katti,et al.  SpotFi: Decimeter Level Localization Using WiFi , 2015, SIGCOMM.

[33]  Fadel Adib,et al.  See through walls with WiFi! , 2013, SIGCOMM.

[34]  Otmar Hilliges,et al.  In-air gestures around unmodified mobile devices , 2014, UIST.

[35]  Yue Liu,et al.  In-Air Handwriting by Passive Gesture Tracking Using Commodity WiFi , 2020, IEEE Communications Letters.

[36]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3 '14.

[37]  David Wetherall,et al.  Tool release: gathering 802.11n traces with channel state information , 2011, CCRV.

[38]  Khaled A. Harras,et al.  WiGest: A ubiquitous WiFi-based gesture recognition system , 2014, 2015 IEEE Conference on Computer Communications (INFOCOM).

[39]  Yasamin Mostofi,et al.  Tracking from One Side - Multi-Person Passive Tracking with WiFi Magnitude Measurements , 2019, 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).

[40]  David Wetherall,et al.  Predictable 802.11 packet delivery from wireless channel measurements , 2010, SIGCOMM '10.

[41]  Xiang Li,et al.  IndoTrack , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[42]  Desney S. Tan,et al.  Humantenna: using the body as an antenna for real-time whole-body interaction , 2012, CHI.

[43]  Xiang 'Anthony' Chen,et al.  Air+touch: interweaving touch & in-air gestures , 2014, UIST.

[44]  Khaled A. Harras,et al.  WiGest demo: A ubiquitous WiFi-based gesture recognition system , 2015, 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[45]  Khadija Baba,et al.  Enhancing Geophysical Signals Through the Use of Savitzky-Golay filtering method , 2014 .

[46]  Yunhao Liu,et al.  Widar2.0: Passive Human Tracking with a Single Wi-Fi Link , 2018, MobiSys.

[47]  Yunhao Liu,et al.  Vernier: Accurate and Fast Acoustic Motion Tracking Using Mobile Devices , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[48]  Xiangming Wen,et al.  Deep Adaptation Networks Based Gesture Recognition using Commodity WiFi , 2020, 2020 IEEE Wireless Communications and Networking Conference (WCNC).

[49]  Robert Harle,et al.  RF-Based Initialisation for Inertial Pedestrian Tracking , 2009, Pervasive.

[50]  Desney S. Tan,et al.  An ultra-low-power human body motion sensor using static electric field sensing , 2012, UbiComp.

[51]  Li Sun,et al.  WiDraw: Enabling Hands-free Drawing in the Air on Commodity WiFi Devices , 2015, MobiCom.

[52]  Guang Li,et al.  Signal Tracking Using Commodity WiFi , 2018, 2018 4th International Conference on Big Data Computing and Communications (BIGCOM).

[53]  Shwetak N. Patel,et al.  Whole-home gesture recognition using wireless signals , 2013, MobiCom.