Phase shifts and wave-packet displacements in neutron interferometry and a nondispersive, nondefocusing phase shifter
暂无分享,去创建一个
A phase shifter in neutron interferometry creates not only a phase shift but also a spatial displacement of the neutron wave packet, leading to a reduced interference contrast. This wave-packet displacement constitutes a major hindrance in measuring large phase shifts. Here we present a nondispersive configuration with two identical phase shifters placed on one path in successive gaps of a symmetric triple Laue (LLL) interferometer. As compared to a single phase shifter, the dual phase shifter generates double the phase shift, yet a net null displacement of the wave packet. The interferometer thus remains fully focused however large the phase shift or the incident wavelength spread, permitting a white incident neutron beam as in the case of a purely topological phase measurement. Misalignment angles of a monolithic nondispersive dual phase shifter are equal and opposite in the two gaps. Its phase therefore remains nondispersive over a much wider angular range and attains a minimum magnitude at the correct orientation, obviating the need to alternate the phase shifter between the two interferometer paths during its alignment. The setup is hence ideally suited for measuring neutron coherent scattering lengths to ultrahigh precision.