Analysis of a Multiobjective Evolutionary Algorithm on the 0-1 knapsack problem

Multiobjective Evolutionary Algorithms (MOEAs) are increasingly being used for effectively solving many real-world problems, and many empirical results are available. However, theoretical analysis is limited to a few simple toy functions. In this work, we select the well-known knapsack problem for the analysis. The multiobjective knapsack problem in its general form is NP-complete. Moreover, the size of the set of Pareto-optimal solutions can grow exponentially with the number of items in the knapsack. Thus, we formalize a (1 + e)-approximate set of the knapsack problem and attempt to present a rigorous running time analysis of a MOEA to obtain the formalized set. The algorithm used in the paper is based on a restricted mating pool with a separate archive to store the remaining population; we call the algorithm a Restricted Evolutionary Multiobjective Optimizer (REMO). We also analyze the running time of REMO on a special bi-objective linear function, known as LOTZ (Leading Ones : Trailing Zeros), whose Pareto set is shown to be a subset of the knapsack. An extension of the analysis to the Simple Evolutionary Multiobjective Optimizer (SEMO) is also presented. A strategy based on partitioning of the decision space into fitness layers is used for the analysis.

[1]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[2]  Rajeev Kumar,et al.  Topological design of communication networks using multiobjective genetic optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[3]  Ingo Wegener,et al.  Fitness Landscapes Based on Sorting and Shortest Paths Problems , 2002, PPSN.

[4]  Dirk Thierens,et al.  Convergence Time Analysis for the Multi-objective Counting Ones Problem , 2003, EMO.

[5]  Thomas Jansen,et al.  The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.

[6]  Pamela H. Vance,et al.  Knapsack Problems: Algorithms and Computer Implementations (S. Martello and P. Toth) , 1993, SIAM Rev..

[7]  Isto Aho Interactive Knapsacks: Theory and Applications , 2002 .

[8]  Marco Laumanns,et al.  Running time analysis of a multi-objective evolutionary algorithm on a simple discrete optimization problem , 2002 .

[9]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[10]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[11]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[12]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[13]  Ivo F. Sbalzariniy,et al.  Multiobjective optimization using evolutionary algorithms , 2000 .

[14]  Günter Rudolph,et al.  How Mutation and Selection Solve Long-Path Problems in Polynomial Expected Time , 1996, Evolutionary Computation.

[15]  Hans Kellerer,et al.  Approximating Multiobjective Knapsack Problems , 2002, Manag. Sci..

[16]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[17]  Rajeev Kumar,et al.  Multicriteria Network Design Using Evolutionary Algorithm , 2003, GECCO.

[18]  Ingo Wegener,et al.  Theoretical Aspects of Evolutionary Algorithms , 2001, ICALP.

[19]  Jens Jägersküpper,et al.  Analysis of a Simple Evolutionary Algorithm for Minimization in Euclidean Spaces , 2003, ICALP.

[20]  P. P. Chakrabarti,et al.  Multiobjective EA Approach for Improved Quality of Solutions for Spanning Tree Problem , 2005, EMO.

[21]  Rajeev Kumar Codebook Design for Vector Quantisation Using Multiobjective Genetic Algorithms , 2007 .

[22]  Marco Laumanns,et al.  Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem , 2004, Natural Computing.

[23]  Lothar M. Schmitt,et al.  Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling , 2004, Theor. Comput. Sci..

[24]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[25]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[26]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[27]  M. Wiecek,et al.  Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .

[28]  Thomas Jansen,et al.  A New Framework for the Valuation of Algorithms for Black-Box Optimization , 2002, FOGA.

[29]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[31]  H IbarraOscar,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975 .

[32]  Rajeev Kumar,et al.  Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm , 2002, Evolutionary Computation.

[33]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[34]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[35]  Rajeev Kumar,et al.  Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy , 1998, IEEE Trans. Neural Networks.

[36]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[37]  Oliver Giel Runtime Analysis of a Simple Multi-Objective Evolutionary Algorithm , 2005, Practical Approaches to Multi-Objective Optimization.

[38]  Thomas Bäck,et al.  Theory of Genetic Algorithms , 2001, Current Trends in Theoretical Computer Science.

[39]  Joshua D. Knowles,et al.  A comparison of encodings and algorithms for multiobjective minimum spanning tree problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[40]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[41]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[42]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[43]  Marc Schoenauer,et al.  Rigorous Hitting Times for Binary Mutations , 1999, Evolutionary Computation.

[44]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[45]  Hans-Paul Schwefel,et al.  How to analyse evolutionary algorithms , 2002, Theor. Comput. Sci..

[46]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[47]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[48]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[49]  Ingo Wegener,et al.  On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions , 2005, J. Discrete Algorithms.

[50]  Thomas Jansen,et al.  On the Optimization of Unimodal Functions with the (1 + 1) Evolutionary Algorithm , 1998, PPSN.

[51]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..