Thermodynamic Ground States of Complex Oxide Heterointerfaces.

The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface, stabilized by the electric field in the space charge region. In contrast, for amorphous LaAlO3/SrTiO3 and epitaxial γ-Al2O3/SrTiO3 heterostructures, the 2DEG formation mainly relies on the formation and accumulation of oxygen vacancies. This class of 2DEG structures exhibits an unstable interface reconstruction associated with a quenched nonequilibrium state.

[1]  R. Dittmann,et al.  Defect-control of conventional and anomalous electron transport at complex oxide interfaces , 2016 .

[2]  R. Dittmann,et al.  Space charges and defect concentration profiles at complex oxide interfaces , 2016 .

[3]  R. Dittmann,et al.  Disentanglement of growth dynamic and thermodynamic effects in LaAlO3/SrTiO3 heterostructures , 2016, Scientific Reports.

[4]  T. Venkatesan,et al.  The Effect of Polar Fluctuation and Lattice Mismatch on Carrier Mobility at Oxide Interfaces. , 2015, Nano letters.

[5]  J. Sulpizio,et al.  Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. , 2015, Nature materials.

[6]  M. Gorgoi,et al.  Band bending and alignment at the spinel/perovskite γ−Al2O3/SrTiO3 heterointerface , 2015 .

[7]  Wei Zhang,et al.  Creation of high mobility two-dimensional electron gases via strain induced polarization at an otherwise nonpolar complex oxide interface. , 2015, Nano letters.

[8]  S. Amoruso,et al.  Controlling the conductivity of amorphous LaAlO3/SrTiO3 interfaces by in-situ application of an electric field during fabrication , 2013 .

[9]  C. J. Li,et al.  Origin of the Two-Dimensional Electron Gas at LaAlO 3 /SrTiO 3 Interfaces: The Role of Oxygen Vacancies and Electronic Reconstruction , 2013, 1305.5016.

[10]  R. Dittmann,et al.  Stoichiometry dependence and thermal stability of conducting NdGaO3/SrTiO3 heterointerfaces , 2013 .

[11]  J. Sun,et al.  A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3 , 2013, Nature Communications.

[12]  N. Pryds,et al.  Degradation of the interfacial conductivity in LaAlO3/SrTiO3 heterostructures during storage at controlled environments , 2013 .

[13]  R. Gordon,et al.  Creation and control of two-dimensional electron gas using Al-based amorphous oxides/SrTiO₃ heterostructures grown by atomic layer deposition. , 2012, Nano letters.

[14]  T. Venkatesan,et al.  Electronic correlation and strain effects at the interfaces between polar and nonpolar complex oxides , 2012, 1208.0410.

[15]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[16]  R. Dittmann,et al.  Influence of charge compensation mechanisms on the sheet electron density at conducting LaAlO3/SrTiO3-interfaces , 2012 .

[17]  Jirong Sun,et al.  Metallic and insulating interfaces of amorphous SrTiO₃-based oxide heterostructures. , 2011, Nano letters.

[18]  J. Mannhart,et al.  Oxide electronics: Interface takes charge over Si. , 2011, Nature materials.

[19]  M. Rozenberg,et al.  Two-dimensional electron gas with universal subbands at the surface of SrTiO3 , 2010, Nature.

[20]  R. Dittmann,et al.  High temperature conductance characteristics of LaAlO3/SrTiO3-heterostructures under equilibrium oxygen atmospheres , 2010 .

[21]  S. Pennycook,et al.  Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure , 2010, 1001.3956.

[22]  H. Kumigashira,et al.  Origin of metallic states at the heterointerface between the band insulators LaAlO3 and SrTiO3. , 2008, Physical review letters.

[23]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[24]  W. G. van der Wiel,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[25]  J. Mannhart,et al.  Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures , 2006, Science.

[26]  R. Waser,et al.  Electrical Conductivity of Epitaxial SrTiO3 Thin Films as a Function of Oxygen Partial Pressure and Temperature , 2006 .

[27]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[28]  R. Moos,et al.  Defect Chemistry of Donor‐Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400°C , 2005 .

[29]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[30]  Donald Morgan Smyth,et al.  The Defect Chemistry of Metal Oxides , 2000 .