An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.

Various criteria based on geometric, energetic, magnetic, and electronic properties are employed to delineate aromatic and antiaromatic systems. The recently proposed block-localized wave function (BLW) method evaluates the original Pauling-Wheland adiabatic resonance energy (ARE), defined as the energy difference between the real conjugated system and the corresponding virtual most stable resonance structure. The BLW-derived ARE of benzene is 57.5 kcal mol(-1) with the 6-311+G** basis set. Kistiakowsky's historical experimental evaluation of the stabilization energy of benzene (36 kcal mol(-1)), based on heats of hydrogenation, seriously underestimates this quantity due to the neglect of the partially counterbalancing hyperconjugative stabilization of cyclohexene, employed as the reference olefin (three times) in Kistiakowsky's evaluation. Based instead on the bond-separation-energy reaction involving ethene, which has no hyperconjugation, as well as methane and ethane, the experimental resonance energy of benzene is found to be 65.0 kcal mol(-1). We derived the "extra cyclic resonance energy" (ECRE) to characterize and measure the extra stabilization (aromaticity) of conjugated rings. ECRE is the difference between the AREs of a fully cyclically conjugated compound and an appropriate model with corresponding, but interrupted (acyclic) conjugation. Based on 1,3,5-hexatriene, which also has three double bonds, the ECRE of benzene is 36.7 kcal mol(-1), whereas based on 1,3,5,7-octatetraene, which has three diene conjugations, the ECRE of benzene is 25.7 kcal mol(-1). Computations on a series of aromatic, nonaromatic, and antiaromatic five-membered rings validate the BLW-computed resonance energies (ARE). ECRE data on the five-membered rings (derived from comparisons with acyclic models) correlate well with nucleus-independent chemical shift (NICS) and other quantitative aromaticity criteria. The ARE of cyclobutadiene is almost the same as butadiene but is 10.5 kcal mol(-1) less than 1,3,5-hexatriene, which also has two diene conjugations. The instability and high reactivity of cyclobutadiene thus mainly result from the sigma-frame strain and the pi-pi Pauli repulsion.

[1]  Jiali Gao,et al.  Cation−π Interactions: An Energy Decomposition Analysis and Its Implication in δ-Opioid Receptor−Ligand Binding , 2002 .

[2]  R. Breslow,et al.  Studies on d-Orbital Conjugation. III. Non-aromaticity of a Derivative of the 1,3-Dithiepinyl Anion, a Ten π-Electron Conjugated System , 1963 .

[3]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[4]  O. Prezhdo,et al.  Aromaticity indices revisited: refinement and application to certain five-membered ring heterocycles , 2001 .

[5]  L. J. Schaad,et al.  Ab Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene , 1983 .

[6]  P. Schleyer,et al.  Sigma-antiaromaticity in cyclobutane, cubane, and other molecules with saturated four-membered rings. , 2003, Organic letters.

[7]  R. Mcweeny An ab initio form of classical valence‐bond theory , 1999 .

[8]  Mario Raimondi,et al.  The electronic structure of the benzene molecule , 1986, Nature.

[9]  Lai‐Sheng Wang,et al.  Observation of all-metal aromatic molecules. , 2001, Science.

[10]  J. R. Collins,et al.  Practical Valence-Bond Calculations , 1982 .

[11]  G. W. Wheland The Resonance Energies of Unsaturated and Aromatic Molecules , 1941 .

[12]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[13]  K. Baldridge,et al.  Bond alternation in triannelated benzenes: dissection of cyclic .pi. from Mills-Nixon effects , 1992 .

[14]  Yirong Mo,et al.  Bond-Distorted Orbitals and Effects of Hybridization and Resonance on C−C Bond Lengths , 1996 .

[15]  Yirong Mo Resonance effect in the allyl cation and anion: a revisit. , 2004, The Journal of organic chemistry.

[16]  J. Collins,et al.  A generalized method for the superposition of resonance structures , 1991 .

[17]  E. Janssens,et al.  σ Aromaticity of the bimetallic Au5Zn+ cluster , 2003 .

[18]  Sason Shaik,et al.  Using valence bond theory to understand electronic excited states: Application to the hidden excited state (2(1)A(g)) of C2nH2n+2 (n=2-14) polyenes , 2000 .

[19]  C. Bird ABSOLUTE HARDNESS AS A CONVENIENT CRITERION OF HETEROAROMATICITY , 1997 .

[20]  S. Lindeman,et al.  Novel Synthesis and Structures of Tris-Annelated Benzene Donors for the Electron-Density Elucidation of the Classical Mills−Nixon Effect , 1998 .

[21]  C. W. Bird A new aromaticity index and its application to five-membered ring heterocycles , 1985 .

[22]  Xavier Fradera,et al.  The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. , 2003, Chemistry.

[23]  Michael J. S. Dewar,et al.  Ground states of conjugated molecules. XI. Improved treatment of hydrocarbons , 1969 .

[24]  P. Fowler,et al.  Unconventional ring currents in an `all-metal aromatic', Al42− , 2001 .

[25]  Antonino Famulari,et al.  Implementation of gradient-optimization algorithms and force constant computations in BSSE-free direct and conventional SCF approaches , 1998 .

[26]  Paolo Lazzeretti,et al.  IGLO STUDY OF BENZENE AND SOME OF ITS ISOMERS AND RELATED MOLECULES. SEARCH FOR EVIDENCE OF THE RING CURRENT MODEL , 1994 .

[27]  W. Biltz Ergebnisse und Aufgaben neuerer chemischer Valenzforschung , 1920 .

[28]  J. W. Ziller,et al.  Kristallographischer Nachweis der Cyclohexatrien-Struktur von Tris(bicyclo[2.1.1]hexeno)benzol: Bindungslängenalternanz nach Widerlegung der Mills-Nixon-Theorie† , 1995 .

[29]  Sason Shaik,et al.  Läßt sich die Frage nach der Tendenz des π‐Elektronensystems von Benzol zur Abweichung von der D6h‐Symmetrie mit Hilfe von Strukturobservablen beantworten? , 1997 .

[30]  Fokke Dijkstra,et al.  Gradients in valence bond theory , 1999 .

[31]  Y. Mo,et al.  Theoretical study of conjugation, hyperconjugation, and steric effect in B2D4 (D=H, F, OH, NH2, and CH3) , 1996 .

[32]  B. Delley,et al.  Analytic energy derivatives in the numerical local‐density‐functional approach , 1991 .

[33]  Yirong Mo,et al.  Charge transfer in the electron donor-acceptor complex BH3NH3. , 2004, Journal of the American Chemical Society.

[34]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[35]  P. Hiberty RECONCILING SIMPLICITY AND ACCURACY : COMPACT VALENCE BOND WAVE FUNCTIONS WITH BREATHING ORBITALS , 1997 .

[36]  K. Merz,et al.  Tunneling dynamics of cyclobutadiene , 1984 .

[37]  R. Diercks,et al.  Tris(benzocyclobutadieno)benzene, the triangular [4]phenylene with a completely bond-fixed cyclohexatriene ring: cobalt-catalyzed synthesis from hexaethynylbenzene and thermal ring opening to 1,2:5,6:9,10-tribenzo-3,4,7,8,11,12-hexadehydro[12]-annulene , 1986 .

[38]  A. Matzger,et al.  The Heat of Hydrogenation of (a) Cyclohexatriene , 2000 .

[39]  G. Trinquier,et al.  Decisive role of π conjugation in the central bond length shortening of butadiene , 1980 .

[40]  Paolo Lazzeretti Assessment of aromaticity via molecular response properties , 2004 .

[41]  Wei Wu,et al.  Theoretical Resonance Energies of Benzene, Cyclobutadiene, and Butadiene , 1994 .

[42]  Paul von Ragué Schleyer,et al.  Importance of Electronic Delocalization on the C−N Bond Rotation in HCX(NH2) (X = O, NH, CH2, S, and Se) , 2003 .

[43]  Sason Shaik,et al.  Valenzbindungsdiagramme – eine Hilfe zum Verständnis chemischer Reaktivität , 1999 .

[44]  Sason Shaik,et al.  A conversation on VB vs MO theory: a never-ending rivalry? , 2003, Accounts of chemical research.

[45]  Sason Shaik,et al.  Is delocalization a driving force in chemistry? Benzene, allyl radical, cyclobutadiene, and their isoelectronic species , 1987 .

[46]  P. V. R. Schleyer,et al.  AROMATIZITAT UND ANTIAROMATIZITAT IN FUNFGLIEDRIGEN C4H4X-RINGSYSTEMEN: BESCHREIBBAR DURCH KLASSISCHE UND MAGNETISCHE KONZEPTE , 1995 .

[47]  A. Matsuura,et al.  Efficient synthesis of benzene and planar cyclooctatetraene fully annelated with bicyclo[2.1.1]hex-2-ene. , 2001, Journal of the American Chemical Society.

[48]  R. Janoschek Has the benzene molecule an extra stability , 1991 .

[49]  D. L. Cooper,et al.  Nonorthogonal weights of modern VB wavefunctions. Implementation and applications within CASVB , 1998 .

[50]  P. Schleyer,et al.  Application of the orbital deletion procedure (ODP) to planar carbocations , 1998 .

[51]  J. Strutt V. On the theory of resonance , 1871, Philosophical Transactions of the Royal Society of London.

[52]  K. Baldridge,et al.  Synthesis and Characterization of Trisbicyclo[2.1.1]hexabenzene, a Highly Strained Bicycloannelated Benzene , 1995 .

[53]  B. Jursic Average deviation from ideal bond order as a measure for aromaticity. AMI commuted aromatic properties of five-membered C4H4X ring systems , 1997 .

[54]  Linus Pauling,et al.  The Nature of the Chemical Bond. V. The Quantum‐Mechanical Calculation of the Resonance Energy of Benzene and Naphthalene and the Hydrocarbon Free Radicals , 1933 .

[55]  J. M. Norbeck,et al.  Valence-bond calculation of the electronic structure of benzene , 1974 .

[56]  Miquel Solà,et al.  The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. , 2005, The Journal of chemical physics.

[57]  D. B. Chesnut Differential ring proton NMR shieldings and cyclic stabilization energies , 1998 .

[58]  K. Jug,et al.  Delocalization Energy of .pi. Electrons as an Index for Aromaticity of Polycyclic Hydrocarbons , 1994 .

[59]  S. Altmann,et al.  Compressional energy and resonance energy , 1952 .

[60]  J. Murray,et al.  Does antiaromaticity imply net destabilization , 1994 .

[61]  Anan Wu,et al.  Efficient algorithm for the spin-free valence bond theory. I. New strategy and primary expressions , 1998 .

[62]  M. Karplus,et al.  Bond-function analysis of rotational barriers: Methanol , 1968 .

[63]  P. Schleyer,et al.  Recommendations for the evaluation of aromatic stabilization energies. , 2002, Organic letters.

[64]  P. Hiberty,et al.  Why Does Benzene Possess a D6h Symmetry? A Quasiclassical State Approach for Probing .pi.-Bonding and Delocalization Energies , 1995 .

[65]  M. Dewar,et al.  Ground States of Conjugated Molecules. II. Allowance for Molecular Geometry1a,b , 1965 .

[66]  David L. Cooper,et al.  Ab Initio Modern Valence Bond Theory , 1999 .

[67]  Zhang Qianer,et al.  BONDED TABLEAU METHOD FOR MANY-ELECTRON SYSTEMS , 1989 .

[68]  Michael M. Haley,et al.  Der Effekt angular anellierter, gespannter Ringe auf Benzol: Strukturen von 1,2‐Dihydrocyclobuta[a]cyclopropa[c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]cyclopropa[e]‐ und 1,2,3,4,5,6‐Hexahydrotricyclobuta[a,c,e]benzol im Kristall , 1994 .

[69]  Y. Mo,et al.  A simple electrostatic model for trisilylamine: Theoretical examinations of the n ->sigma* negative hyperconjugation, p pi -> d pi bonding, and stereoelectronic interaction , 1999 .

[70]  C. Bock,et al.  An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons , 1975 .

[71]  Yirong Mo,et al.  Geometrical optimization for strictly localized structures , 2003 .

[72]  Sason Shaik,et al.  Valence Bond Diagrams and Chemical Reactivity. , 1999, Angewandte Chemie.

[73]  Mikhail N. Glukhovtsev,et al.  Aromaticity and Antiaromaticity: Electronic and Structural Aspects , 1994 .

[74]  P. Geerlings,et al.  Derivatives of Molecular Valence as a Measure of Aromaticity , 1998 .

[75]  W. E. Billups,et al.  The Effect of Fusion of Angular Strained Rings on Benzene: Crystal Structures of 1,2‐Dihydrocyclobuta[a]cyclopropa[c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]cyclopropa[e]‐, and 1,2,3,4,5,6‐Hexahydrotricyclobuta[a,c,e]benzene , 1994 .

[76]  Wei Wu,et al.  Study of intramolecular electron transfer with a two-state model based on the orbital deletion procedure , 2003 .

[77]  D. Hornig The Resonance Energy of Benzene , 1950 .

[78]  R. Grubbs,et al.  Quantitative assessment of the antiaromatic city of cyclobutadiene by electrochemical studies on quinone derivatives , 1973 .

[79]  Mark S. Gordon,et al.  A comparative study of the bonding in heteroatom analogues of benzene , 1992 .

[80]  S. Shaik,et al.  The Distortive Tendency of Benzene π Electrons: How Is It Related to Structural Observables? , 1997 .

[81]  Elena Tkachenko,et al.  Strain induced bond localization in strained aromatic compounds with extended π systems , 2001, J. Comput. Chem..

[82]  Sason Shaik,et al.  When does electronic delocalization become a driving force of chemical bonding , 1988 .

[83]  Facts and artifacts about aromatic stability estimation , 2003 .

[84]  Wei Wu,et al.  Delocalization in allyl cation, radical, and anion , 1996 .

[85]  C. Bock,et al.  An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons , 1976 .

[86]  A. Voter,et al.  The generalized resonating valence bond description of cyclobutadiene , 1986 .

[87]  K. Houk,et al.  How large is the conjugative stabilization of diynes? , 2004, Journal of the American Chemical Society.

[88]  R. J. Abraham,et al.  Proton chemical shifts in NMR. Part 14. Proton chemical shifts, ring currents and π electron effects in condensed aromatic hydrocarbons and substituted benzenes , 2000 .

[89]  A. Katritzky,et al.  Aromaticity: a Theoretical Concept of Immense Practical Importance , 2000 .

[90]  T. M. Krygowski,et al.  Structural aspects of aromaticity. , 2001, Chemical reviews.

[91]  Karl Jug,et al.  Aromaticity as a multi-dimensional phenomenon , 1991 .

[92]  J. V. Lenthe,et al.  1,3,5-Cyclohexatriene captured in computro; the importance of resonance , 2002 .

[93]  Yirong Mo,et al.  Hyperconjugation effect in substituted methyl boranes: an orbital deletion procedure analysis. , 2004, The Journal of organic chemistry.

[94]  H. Kollmar DIRECT CALCULATION OF RESONANCE ENERGIES OF CONJUGATED HYDROCARBONS WITH AB INITIO MO METHODS , 1979 .

[95]  Haijun Jiao,et al.  What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..

[96]  Frank Weinhold,et al.  Natural resonance theory: I. General formalism , 1998 .

[97]  K. B. Wiberg Antiaromaticity in monocyclic conjugated carbon rings. , 2001, Chemical reviews.

[98]  P. Schleyer,et al.  QUANTITATIVE EVALUATION OF HYPERCONJUGATION IN THE CYCLOPROPYLCARBINYL CATION AND IN CYCLOPROPYLBORANE , 1997 .

[99]  J. Ziller,et al.  X‐Ray Diffraction Evidence for a Cyclohexatriene Motif in the Molecular Structure of Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after the Refutation of the Mills–Nixon Theory , 1995 .

[100]  Hilton A. Smith,et al.  Heats of Organic Reactions. IV. Hydrogenation of Some Dienes and of Benzene , 1936 .

[101]  L. J. Schaad,et al.  Hueckel molecular orbital .pi. resonance energies. New approach , 1971 .

[102]  Y. Mo,et al.  Theoretical analysis of electronic delocalization , 1998 .

[103]  R. M. Minyaev,et al.  Cyclic aromatic systems with hypervalent centers. , 2001, Chemical reviews.

[104]  J. Ketelaar,et al.  A Theoretical Calculation of the Resonance Energies and Ultraviolet Spectra of Benzene and Naphthalene , 1950 .

[105]  P. Hiberty,et al.  When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet , 1985 .

[106]  Paul von Ragué Schleyer,et al.  Aromaticity and Antiaromaticity in Five‐Membered C4H4X Ring Systems: “Classical” and “Magnetic” Concepts May Not Be “Orthogonal” , 1995 .

[107]  Otto Exner,et al.  Resonance energy in benzene and ethene derivatives in the gas phase as a measure of resonance ability of various functional groups , 2000 .

[108]  Sason Shaik,et al.  A different story of pi-delocalization--the distortivity of pi-electrons and its chemical manifestations. , 2001, Chemical reviews.

[109]  Snyder,et al.  Experimental determination of the antiaromaticity of cyclobutadiene , 1999, Science.

[110]  G. P. Bean Application of Natural Bond Orbital Analysis and Natural Resonance Theory to Delocalization and Aromaticity in Five-Membered Heteroaromatic Compounds. , 1998, The Journal of organic chemistry.

[111]  D. B. Chesnut,et al.  The electron localization function description of aromaticity in five-membered rings , 2000 .

[112]  P. Schreiner,et al.  Konsequenzen der Triplett‐Aromatizität in 4nπ‐Elektronen‐Annulenen – die Berechnung magnetischer Abschirmungen für offenkettige Moleküle , 1998 .

[113]  K. Vollhardt,et al.  The role of delocalization in benzene , 1993 .

[114]  G. W. Wheland,et al.  Resonance in Organic Chemistry , 1956 .

[115]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[116]  P. Schleyer,et al.  Hyperconjugative π-Aromaticity: How To Make Cyclopentadiene Aromatic , 1999 .

[117]  F. Tao,et al.  A new approach to theab initio energy of the homodesmic reaction for the resonance energy of benzene , 1992 .

[118]  Paul von Ragué Schleyer,et al.  Consequences of Triplet Aromaticity in 4nπ‐Electron Annulenes: Calculation of Magnetic Shieldings for Open‐Shell Species , 1998 .

[119]  Philippe C. Hiberty,et al.  Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH , 1994 .

[120]  M. Raimondi,et al.  Ab initio valence-bond calculations. 5. Benzene , 1977 .

[121]  David L. Cooper,et al.  Applications of spin-coupled valence bond theory , 1991 .

[122]  A. Katritzky,et al.  To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.

[123]  Jiali Gao,et al.  The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. , 2004, Angewandte Chemie.

[124]  Alexander I Boldyrev,et al.  All-Metal Antiaromatic Molecule: Rectangular Al44- in the Li3Al4- Anion , 2003, Science.

[125]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[126]  L. J. Schaad,et al.  On the stability of large [4n]annulenes. , 2003, Organic letters.

[127]  Mario Raimondi,et al.  Modification of the Roothaan equations to exclude BSSE from molecular interaction calculations , 1996 .

[128]  J. F. Liebman,et al.  The energetics of aromatic hydrocarbons: an experimental thermochemical perspective. , 2001, Chemical reviews.

[129]  G. Glockler Resonance Energies of Benzene and Butadiene , 1953 .

[130]  C. Bock,et al.  Empirical resonance energies for benzene and pyridine , 1985 .