An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.
暂无分享,去创建一个
[1] Jiali Gao,et al. Cation−π Interactions: An Energy Decomposition Analysis and Its Implication in δ-Opioid Receptor−Ligand Binding , 2002 .
[2] R. Breslow,et al. Studies on d-Orbital Conjugation. III. Non-aromaticity of a Derivative of the 1,3-Dithiepinyl Anion, a Ten π-Electron Conjugated System , 1963 .
[3] Wei Wu,et al. XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..
[4] O. Prezhdo,et al. Aromaticity indices revisited: refinement and application to certain five-membered ring heterocycles , 2001 .
[5] L. J. Schaad,et al. Ab Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene , 1983 .
[6] P. Schleyer,et al. Sigma-antiaromaticity in cyclobutane, cubane, and other molecules with saturated four-membered rings. , 2003, Organic letters.
[7] R. Mcweeny. An ab initio form of classical valence‐bond theory , 1999 .
[8] Mario Raimondi,et al. The electronic structure of the benzene molecule , 1986, Nature.
[9] Lai‐Sheng Wang,et al. Observation of all-metal aromatic molecules. , 2001, Science.
[10] J. R. Collins,et al. Practical Valence-Bond Calculations , 1982 .
[11] G. W. Wheland. The Resonance Energies of Unsaturated and Aromatic Molecules , 1941 .
[12] Paul von Ragué Schleyer,et al. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.
[13] K. Baldridge,et al. Bond alternation in triannelated benzenes: dissection of cyclic .pi. from Mills-Nixon effects , 1992 .
[14] Yirong Mo,et al. Bond-Distorted Orbitals and Effects of Hybridization and Resonance on C−C Bond Lengths , 1996 .
[15] Yirong Mo. Resonance effect in the allyl cation and anion: a revisit. , 2004, The Journal of organic chemistry.
[16] J. Collins,et al. A generalized method for the superposition of resonance structures , 1991 .
[17] E. Janssens,et al. σ Aromaticity of the bimetallic Au5Zn+ cluster , 2003 .
[18] Sason Shaik,et al. Using valence bond theory to understand electronic excited states: Application to the hidden excited state (2(1)A(g)) of C2nH2n+2 (n=2-14) polyenes , 2000 .
[19] C. Bird. ABSOLUTE HARDNESS AS A CONVENIENT CRITERION OF HETEROAROMATICITY , 1997 .
[20] S. Lindeman,et al. Novel Synthesis and Structures of Tris-Annelated Benzene Donors for the Electron-Density Elucidation of the Classical Mills−Nixon Effect , 1998 .
[21] C. W. Bird. A new aromaticity index and its application to five-membered ring heterocycles , 1985 .
[22] Xavier Fradera,et al. The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. , 2003, Chemistry.
[23] Michael J. S. Dewar,et al. Ground states of conjugated molecules. XI. Improved treatment of hydrocarbons , 1969 .
[24] P. Fowler,et al. Unconventional ring currents in an `all-metal aromatic', Al42− , 2001 .
[25] Antonino Famulari,et al. Implementation of gradient-optimization algorithms and force constant computations in BSSE-free direct and conventional SCF approaches , 1998 .
[26] Paolo Lazzeretti,et al. IGLO STUDY OF BENZENE AND SOME OF ITS ISOMERS AND RELATED MOLECULES. SEARCH FOR EVIDENCE OF THE RING CURRENT MODEL , 1994 .
[27] W. Biltz. Ergebnisse und Aufgaben neuerer chemischer Valenzforschung , 1920 .
[28] J. W. Ziller,et al. Kristallographischer Nachweis der Cyclohexatrien-Struktur von Tris(bicyclo[2.1.1]hexeno)benzol: Bindungslängenalternanz nach Widerlegung der Mills-Nixon-Theorie† , 1995 .
[29] Sason Shaik,et al. Läßt sich die Frage nach der Tendenz des π‐Elektronensystems von Benzol zur Abweichung von der D6h‐Symmetrie mit Hilfe von Strukturobservablen beantworten? , 1997 .
[30] Fokke Dijkstra,et al. Gradients in valence bond theory , 1999 .
[31] Y. Mo,et al. Theoretical study of conjugation, hyperconjugation, and steric effect in B2D4 (D=H, F, OH, NH2, and CH3) , 1996 .
[32] B. Delley,et al. Analytic energy derivatives in the numerical local‐density‐functional approach , 1991 .
[33] Yirong Mo,et al. Charge transfer in the electron donor-acceptor complex BH3NH3. , 2004, Journal of the American Chemical Society.
[34] P. Schleyer,et al. Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.
[35] P. Hiberty. RECONCILING SIMPLICITY AND ACCURACY : COMPACT VALENCE BOND WAVE FUNCTIONS WITH BREATHING ORBITALS , 1997 .
[36] K. Merz,et al. Tunneling dynamics of cyclobutadiene , 1984 .
[37] R. Diercks,et al. Tris(benzocyclobutadieno)benzene, the triangular [4]phenylene with a completely bond-fixed cyclohexatriene ring: cobalt-catalyzed synthesis from hexaethynylbenzene and thermal ring opening to 1,2:5,6:9,10-tribenzo-3,4,7,8,11,12-hexadehydro[12]-annulene , 1986 .
[38] A. Matzger,et al. The Heat of Hydrogenation of (a) Cyclohexatriene , 2000 .
[39] G. Trinquier,et al. Decisive role of π conjugation in the central bond length shortening of butadiene , 1980 .
[40] Paolo Lazzeretti. Assessment of aromaticity via molecular response properties , 2004 .
[41] Wei Wu,et al. Theoretical Resonance Energies of Benzene, Cyclobutadiene, and Butadiene , 1994 .
[42] Paul von Ragué Schleyer,et al. Importance of Electronic Delocalization on the C−N Bond Rotation in HCX(NH2) (X = O, NH, CH2, S, and Se) , 2003 .
[43] Sason Shaik,et al. Valenzbindungsdiagramme – eine Hilfe zum Verständnis chemischer Reaktivität , 1999 .
[44] Sason Shaik,et al. A conversation on VB vs MO theory: a never-ending rivalry? , 2003, Accounts of chemical research.
[45] Sason Shaik,et al. Is delocalization a driving force in chemistry? Benzene, allyl radical, cyclobutadiene, and their isoelectronic species , 1987 .
[46] P. V. R. Schleyer,et al. AROMATIZITAT UND ANTIAROMATIZITAT IN FUNFGLIEDRIGEN C4H4X-RINGSYSTEMEN: BESCHREIBBAR DURCH KLASSISCHE UND MAGNETISCHE KONZEPTE , 1995 .
[47] A. Matsuura,et al. Efficient synthesis of benzene and planar cyclooctatetraene fully annelated with bicyclo[2.1.1]hex-2-ene. , 2001, Journal of the American Chemical Society.
[48] R. Janoschek. Has the benzene molecule an extra stability , 1991 .
[49] D. L. Cooper,et al. Nonorthogonal weights of modern VB wavefunctions. Implementation and applications within CASVB , 1998 .
[50] P. Schleyer,et al. Application of the orbital deletion procedure (ODP) to planar carbocations , 1998 .
[51] J. Strutt. V. On the theory of resonance , 1871, Philosophical Transactions of the Royal Society of London.
[52] K. Baldridge,et al. Synthesis and Characterization of Trisbicyclo[2.1.1]hexabenzene, a Highly Strained Bicycloannelated Benzene , 1995 .
[53] B. Jursic. Average deviation from ideal bond order as a measure for aromaticity. AMI commuted aromatic properties of five-membered C4H4X ring systems , 1997 .
[54] Linus Pauling,et al. The Nature of the Chemical Bond. V. The Quantum‐Mechanical Calculation of the Resonance Energy of Benzene and Naphthalene and the Hydrocarbon Free Radicals , 1933 .
[55] J. M. Norbeck,et al. Valence-bond calculation of the electronic structure of benzene , 1974 .
[56] Miquel Solà,et al. The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. , 2005, The Journal of chemical physics.
[57] D. B. Chesnut. Differential ring proton NMR shieldings and cyclic stabilization energies , 1998 .
[58] K. Jug,et al. Delocalization Energy of .pi. Electrons as an Index for Aromaticity of Polycyclic Hydrocarbons , 1994 .
[59] S. Altmann,et al. Compressional energy and resonance energy , 1952 .
[60] J. Murray,et al. Does antiaromaticity imply net destabilization , 1994 .
[61] Anan Wu,et al. Efficient algorithm for the spin-free valence bond theory. I. New strategy and primary expressions , 1998 .
[62] M. Karplus,et al. Bond-function analysis of rotational barriers: Methanol , 1968 .
[63] P. Schleyer,et al. Recommendations for the evaluation of aromatic stabilization energies. , 2002, Organic letters.
[64] P. Hiberty,et al. Why Does Benzene Possess a D6h Symmetry? A Quasiclassical State Approach for Probing .pi.-Bonding and Delocalization Energies , 1995 .
[65] M. Dewar,et al. Ground States of Conjugated Molecules. II. Allowance for Molecular Geometry1a,b , 1965 .
[66] David L. Cooper,et al. Ab Initio Modern Valence Bond Theory , 1999 .
[67] Zhang Qianer,et al. BONDED TABLEAU METHOD FOR MANY-ELECTRON SYSTEMS , 1989 .
[68] Michael M. Haley,et al. Der Effekt angular anellierter, gespannter Ringe auf Benzol: Strukturen von 1,2‐Dihydrocyclobuta[a]cyclopropa[c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]cyclopropa[e]‐ und 1,2,3,4,5,6‐Hexahydrotricyclobuta[a,c,e]benzol im Kristall , 1994 .
[69] Y. Mo,et al. A simple electrostatic model for trisilylamine: Theoretical examinations of the n ->sigma* negative hyperconjugation, p pi -> d pi bonding, and stereoelectronic interaction , 1999 .
[70] C. Bock,et al. An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons , 1975 .
[71] Yirong Mo,et al. Geometrical optimization for strictly localized structures , 2003 .
[72] Sason Shaik,et al. Valence Bond Diagrams and Chemical Reactivity. , 1999, Angewandte Chemie.
[73] Mikhail N. Glukhovtsev,et al. Aromaticity and Antiaromaticity: Electronic and Structural Aspects , 1994 .
[74] P. Geerlings,et al. Derivatives of Molecular Valence as a Measure of Aromaticity , 1998 .
[75] W. E. Billups,et al. The Effect of Fusion of Angular Strained Rings on Benzene: Crystal Structures of 1,2‐Dihydrocyclobuta[a]cyclopropa[c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]‐, 1,2,3,4‐Tetrahydrodicyclobuta[a,c]cyclopropa[e]‐, and 1,2,3,4,5,6‐Hexahydrotricyclobuta[a,c,e]benzene , 1994 .
[76] Wei Wu,et al. Study of intramolecular electron transfer with a two-state model based on the orbital deletion procedure , 2003 .
[77] D. Hornig. The Resonance Energy of Benzene , 1950 .
[78] R. Grubbs,et al. Quantitative assessment of the antiaromatic city of cyclobutadiene by electrochemical studies on quinone derivatives , 1973 .
[79] Mark S. Gordon,et al. A comparative study of the bonding in heteroatom analogues of benzene , 1992 .
[80] S. Shaik,et al. The Distortive Tendency of Benzene π Electrons: How Is It Related to Structural Observables? , 1997 .
[81] Elena Tkachenko,et al. Strain induced bond localization in strained aromatic compounds with extended π systems , 2001, J. Comput. Chem..
[82] Sason Shaik,et al. When does electronic delocalization become a driving force of chemical bonding , 1988 .
[83] Facts and artifacts about aromatic stability estimation , 2003 .
[84] Wei Wu,et al. Delocalization in allyl cation, radical, and anion , 1996 .
[85] C. Bock,et al. An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons , 1976 .
[86] A. Voter,et al. The generalized resonating valence bond description of cyclobutadiene , 1986 .
[87] K. Houk,et al. How large is the conjugative stabilization of diynes? , 2004, Journal of the American Chemical Society.
[88] R. J. Abraham,et al. Proton chemical shifts in NMR. Part 14. Proton chemical shifts, ring currents and π electron effects in condensed aromatic hydrocarbons and substituted benzenes , 2000 .
[89] A. Katritzky,et al. Aromaticity: a Theoretical Concept of Immense Practical Importance , 2000 .
[90] T. M. Krygowski,et al. Structural aspects of aromaticity. , 2001, Chemical reviews.
[91] Karl Jug,et al. Aromaticity as a multi-dimensional phenomenon , 1991 .
[92] J. V. Lenthe,et al. 1,3,5-Cyclohexatriene captured in computro; the importance of resonance , 2002 .
[93] Yirong Mo,et al. Hyperconjugation effect in substituted methyl boranes: an orbital deletion procedure analysis. , 2004, The Journal of organic chemistry.
[94] H. Kollmar. DIRECT CALCULATION OF RESONANCE ENERGIES OF CONJUGATED HYDROCARBONS WITH AB INITIO MO METHODS , 1979 .
[95] Haijun Jiao,et al. What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..
[96] Frank Weinhold,et al. Natural resonance theory: I. General formalism , 1998 .
[97] K. B. Wiberg. Antiaromaticity in monocyclic conjugated carbon rings. , 2001, Chemical reviews.
[98] P. Schleyer,et al. QUANTITATIVE EVALUATION OF HYPERCONJUGATION IN THE CYCLOPROPYLCARBINYL CATION AND IN CYCLOPROPYLBORANE , 1997 .
[99] J. Ziller,et al. X‐Ray Diffraction Evidence for a Cyclohexatriene Motif in the Molecular Structure of Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after the Refutation of the Mills–Nixon Theory , 1995 .
[100] Hilton A. Smith,et al. Heats of Organic Reactions. IV. Hydrogenation of Some Dienes and of Benzene , 1936 .
[101] L. J. Schaad,et al. Hueckel molecular orbital .pi. resonance energies. New approach , 1971 .
[102] Y. Mo,et al. Theoretical analysis of electronic delocalization , 1998 .
[103] R. M. Minyaev,et al. Cyclic aromatic systems with hypervalent centers. , 2001, Chemical reviews.
[104] J. Ketelaar,et al. A Theoretical Calculation of the Resonance Energies and Ultraviolet Spectra of Benzene and Naphthalene , 1950 .
[105] P. Hiberty,et al. When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet , 1985 .
[106] Paul von Ragué Schleyer,et al. Aromaticity and Antiaromaticity in Five‐Membered C4H4X Ring Systems: “Classical” and “Magnetic” Concepts May Not Be “Orthogonal” , 1995 .
[107] Otto Exner,et al. Resonance energy in benzene and ethene derivatives in the gas phase as a measure of resonance ability of various functional groups , 2000 .
[108] Sason Shaik,et al. A different story of pi-delocalization--the distortivity of pi-electrons and its chemical manifestations. , 2001, Chemical reviews.
[109] Snyder,et al. Experimental determination of the antiaromaticity of cyclobutadiene , 1999, Science.
[110] G. P. Bean. Application of Natural Bond Orbital Analysis and Natural Resonance Theory to Delocalization and Aromaticity in Five-Membered Heteroaromatic Compounds. , 1998, The Journal of organic chemistry.
[111] D. B. Chesnut,et al. The electron localization function description of aromaticity in five-membered rings , 2000 .
[112] P. Schreiner,et al. Konsequenzen der Triplett‐Aromatizität in 4nπ‐Elektronen‐Annulenen – die Berechnung magnetischer Abschirmungen für offenkettige Moleküle , 1998 .
[113] K. Vollhardt,et al. The role of delocalization in benzene , 1993 .
[114] G. W. Wheland,et al. Resonance in Organic Chemistry , 1956 .
[115] Mark S. Gordon,et al. General atomic and molecular electronic structure system , 1993, J. Comput. Chem..
[116] P. Schleyer,et al. Hyperconjugative π-Aromaticity: How To Make Cyclopentadiene Aromatic , 1999 .
[117] F. Tao,et al. A new approach to theab initio energy of the homodesmic reaction for the resonance energy of benzene , 1992 .
[118] Paul von Ragué Schleyer,et al. Consequences of Triplet Aromaticity in 4nπ‐Electron Annulenes: Calculation of Magnetic Shieldings for Open‐Shell Species , 1998 .
[119] Philippe C. Hiberty,et al. Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH , 1994 .
[120] M. Raimondi,et al. Ab initio valence-bond calculations. 5. Benzene , 1977 .
[121] David L. Cooper,et al. Applications of spin-coupled valence bond theory , 1991 .
[122] A. Katritzky,et al. To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.
[123] Jiali Gao,et al. The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. , 2004, Angewandte Chemie.
[124] Alexander I Boldyrev,et al. All-Metal Antiaromatic Molecule: Rectangular Al44- in the Li3Al4- Anion , 2003, Science.
[125] Warren J. Hehre,et al. AB INITIO Molecular Orbital Theory , 1986 .
[126] L. J. Schaad,et al. On the stability of large [4n]annulenes. , 2003, Organic letters.
[127] Mario Raimondi,et al. Modification of the Roothaan equations to exclude BSSE from molecular interaction calculations , 1996 .
[128] J. F. Liebman,et al. The energetics of aromatic hydrocarbons: an experimental thermochemical perspective. , 2001, Chemical reviews.
[129] G. Glockler. Resonance Energies of Benzene and Butadiene , 1953 .
[130] C. Bock,et al. Empirical resonance energies for benzene and pyridine , 1985 .