Nonisothermal heat resistance determinations with the thermoresistometer Mastia
暂无分享,去创建一个
A. Esnoz | A. Palop | R. Conesa | R Conesa | S Andreu | P S Fernández | A Esnoz | A Palop | P. S. Fernández | S. Andréu
[1] M. Eiroa,et al. Alicyclobacillus in orange juice: occurrence and heat resistance of spores. , 1999, Journal of food protection.
[2] S. Condón,et al. Microbial heat resistance determinations by the multipoint system with the thermoresistometer TR-SC Improvement of this methodology , 1993 .
[3] P. Periago,et al. Prediction of Bacillus subtilis spore survival after a combined non-isothermal-isothermal heat treatment , 2003 .
[4] M B Cole,et al. Effect of heating rate on the thermal inactivation of Listeria monocytogenes. , 1994, The Journal of applied bacteriology.
[5] M. Peleg,et al. Calculating Microbial Survival Parameters and Predicting Survival Curves from Non-Isothermal Inactivation Data , 2004, Critical reviews in food science and nutrition.
[6] F. M. Silva,et al. Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes , 2001 .
[7] M Peleg,et al. Reinterpretation of microbial survival curves. , 1998, Critical reviews in food science and nutrition.
[8] Pablo S. Fernández,et al. Application of nonlinear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains ofBacillus cereus spores , 1999 .
[9] P. McClure,et al. Development of thermal inactivation models for Salmonella enteritidis and Escherichia coli O157:H7 with temperature, pH and NaCl as controlling factors. , 1997, International journal of food microbiology.
[10] S. Condón,et al. Predicting microbial heat inactivation under nonisothermal treatments. , 2007, Journal of food protection.
[11] Chang Yong Lee,et al. Control of Alicyclobacillus in the juice industry , 1998 .
[12] H. Mori,et al. Regulation of the heat-shock response in bacteria. , 1993, Annual review of microbiology.
[13] W. H. Elliott,et al. Data for Biochemical Research , 1986 .
[14] B. Welt,et al. Iterative Method for Kinetic Parameter Estimation from Dynamic Thermal Treatments , 1997 .
[15] S. Condón,et al. Heat resistance of Alicyclobacillus acidocaldarius in water, various buffers, and orange juice. , 2000, Journal of food protection.
[16] P. Periago,et al. Note. Kinetic parameters of Bacillus stearothermophilus spores under isothermal and non-isothermal heating conditions Nota. Parámetros cinéticos del tratamiento isotérmico y no isotérmico de esporas de Bacillus stearothermophilus , 1998 .
[17] B. Welt,et al. Kinetic Parameter Estimation in Conduction Heating Foods Subjected to Dynamic Thermal Treatments , 1997 .
[18] Immobilized α-amylase from Bacillus licheniformis: a potential enzymic time—temperature integrator for thermal processing , 2007 .
[19] P. M. Foegeding,et al. Heat resistance of Alicyclobacillus acidoterrestris spores as affected by various pH values and organic acids. , 1998, Journal of food protection.
[20] R. C. Whiting,et al. Variation among Escherichia coli O157:H7 strains relative to their growth, survival, thermal inactivation, and toxin production in broth. , 2002, International journal of food microbiology.
[21] S. Condón,et al. Predicting heat inactivation of Staphylococcus aureus under nonisothermal treatments at different pH. , 2006, Molecular nutrition & food research.
[22] S. Condón,et al. Thermal Death Determination: Design and Evaluation of a Thermoresistometer , 1989 .
[23] O. Cerf. Revue bibliographique : caractérisation de la thermorésistance des spores bactériennes pour l'optimisation des traitements UHT , 1987 .
[24] P. Periago,et al. Identification of Proteins Involved in the Heat Stress Response of Bacillus cereus ATCC 14579 , 2002, Applied and Environmental Microbiology.
[25] Cristina L. M. Silva,et al. Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. , 1999, International journal of food microbiology.