Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis

Gravity and topography provide important insights regarding the degree and mechanisms of isostatic compensation. The azimuthally isotropic coherence function be- tween the Bouguer gravity anomaly and topography evolves from high to low for increasing wavenumber, a diagnostic that can be predicted for a variety of lithospheric loading models and used in inversions for flexural rigidity thereof. In this study we investigate the isostatic response of continental Australia. We consider the effects of directionally anisotropic plate strength on the coherelce. The anisotropic coherence function is calculated for regions of Australia that have distinctive geological and geophysical properties. The coherence estimation is performed by the Thomson multiple-Slepian-taper spectral analysis method extended to two-dimensional fields. Our analysis reveals the existence of flexural anisotropy in central Australia, indicative of a weaker N-S direction of lower Te. This observation is consistent with the suggestion that the parallel faults in that area act to make the lithosphere weaker in the direction perpendicular to them. It can. also be related to the N-S direction of maximum stress and possibly the presence of E-W running zones weakened due to differential sediment burial rates. We also demonstrate that the multitaper method has distinct advantages for computing the isotropic coherence function. The ability to make many independent estimates of the isostatic response that are minimally affected by spectral leakage results in a coherence that is more robust than with modified periodogram methods, particularly at low wavenumbers. Our analysis elucidates the reasons for discrepancies in previous estimates of effective elastic thickness Te of the Australian lithosphere. In isotropic inversions for Te, we obtain values that are as much as a factor of 2 less than those obtained in standard inversions of the periodogram coherence using Bouguer gravity and topography but greater than those obtained by inversions that utilize free-air rather than Bouguer gravity and ignore the presence of subsurface loads. However, owing to the low spectral power of the Australian topography, the uncertainty on any estimate of Te is substantial.

[1]  Walter H. F. Smith,et al.  Satellite gravity: Insights into the Solid Earth and its fluid envelope , 1998 .

[2]  Simon Haykin,et al.  Advances in spectrum analysis and array processing , 1991 .

[3]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[4]  D. Sandwell,et al.  Compensation of swells and plateaus in the north Pacific: No direct evidence for mantle convection , 1988 .

[5]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[6]  C. Ebinger,et al.  Soft plates and hot spots : Views from Afar , 1996 .

[7]  Jae S. Lim,et al.  Properties of two dimensional maximum entropy power spectrum estimates , 1982, ICASSP.

[8]  Jae Lim,et al.  Properties of two-dimensional maximum entropy power spectrum estimates , 1982 .

[9]  R. Hillis,et al.  The origins of the intraplate stress field in continental Australia , 1995 .

[10]  D’Agostino,et al.  Convective support of long‐wavelength topography in the Apennines (Italy) , 1999 .

[11]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[12]  Donald L. Turcotte,et al.  Geodynamics : applications of continuum physics to geological problems , 1982 .

[13]  M. Zuber,et al.  Effective Elastic Thicknesses of the Lithosphere and Mechanisms of Isostatic Compensation in Australia , 1989 .

[14]  Scott D. Reynolds,et al.  In situ stress field of eastern Australia , 1999 .

[15]  David J. Thomson,et al.  Detection of dispersive signals using multitaper dual‐frequency coherence , 1998 .

[16]  Kurt S. Riedel,et al.  Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..

[17]  Rudolf Komm,et al.  Multitaper Spectral Analysis and Wavelet Denoising Applied to Helioseismic Data , 1998 .

[18]  L. Lavier,et al.  The effect of sedimentary cover on the flexural strength of continental lithosphere , 1997, Nature.

[19]  A. Malinverno,et al.  On the robustness of elastic thickness estimates obtained using the coherence method , 1995 .

[20]  Alan D. Chave,et al.  On the robust estimation of power spectra, coherences, and transfer functions , 1987 .

[21]  Malcolm Sambridge,et al.  Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure , 1996 .

[22]  Donald B. Percival,et al.  Spectrum estimation by wavelet thresholding of multitaper estimators , 1998, IEEE Trans. Signal Process..

[23]  David J. Thomson,et al.  Coherence established between atmospheric carbon dioxide and global temperature , 1990, Nature.

[24]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[25]  F. Lilley,et al.  Electrical conductivity from Australian magnetometer arrays using spatial gradient data , 1981 .

[26]  Robert B. Smith,et al.  Flexural rigidity of the Basin and Range‐Colorado Plateau‐Rocky Mountain transition from coherence analysis of gravity and topography , 1994 .

[27]  R. Stephenson Flexural models of continental lithosphere based on the long‐term erosional decay of topography , 1984 .

[28]  Alfred Hanssen Multidimensional multitaper spectral estimation , 1997, Signal Process..

[29]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[30]  W. Griffin,et al.  The flexural rigidity of Fennoscandia: reflection of the tectonothermal age of the lithospheric mantle , 1999 .

[31]  S. Ji,et al.  Archaean cratonic roots, mantle shear zones and deep electrical anisotropy , 1995, Nature.

[32]  D. Finlayson Geophysical differences in the lithosphere between phanerozoic and precambrian Australia , 1982 .

[33]  B. Kennett,et al.  The crustal thickness of Australia , 2000 .

[34]  R. Parker,et al.  Isostasy in Australia and the Evolution of the Compensation Mechanism , 1978, Science.

[35]  K. Lambeck,et al.  THE STATE OF STRESS WITHIN THE AUSTRALIAN CONTINENT , 1984 .

[36]  K. Lambeck,et al.  Determination of crustal structure in central Australia by inversion of traveltime residuals , 1996 .

[37]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[38]  Scott D. Reynolds,et al.  The Australian stress map , 1998 .

[39]  Dean B. Gesch,et al.  New land surface digital elevation model covers the Earth , 1999 .

[40]  K. Lambeck,et al.  Teleseismic travel-time anomalies and deep crustral structure in central Australia , 1988 .

[41]  Robert B. Smith,et al.  Strength and rheology of the western U.S. Cordillera , 1995 .

[42]  M. Diament,et al.  The effective elastic thickness (Te) of continental lithosphere: What does it really mean? , 1995 .

[43]  Barry D. Van Veen,et al.  Multiple window based minimum variance spectrum estimation for multidimensional random fields , 1992, IEEE Trans. Signal Process..

[44]  R. Hilst,et al.  The deep structure of the Australian continent from surface wave tomography , 1999 .

[45]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[46]  D. Gough Electrical Conductivity under Western North America in Relation to Heat Flow, Seismology, and Structure , 1974 .

[47]  K. Lambeck,et al.  Isostatic response of the lithosphere with in-plane stress: Application to central Australia , 1985 .

[48]  David J. Thomson,et al.  Multiple‐taper spectral analysis of terrestrial free oscillations: part I , 1987 .

[49]  On the Performance Advantage Spectral Analysis , 1992 .

[50]  J. Cull Heat Flow and Regional Geophysics in Australia , 1991 .

[51]  C. Jaupart,et al.  Large-scale crustal heterogeneities and lithospheric strength in cratons , 1998 .

[52]  J. Lees,et al.  Multiple-taper spectral analysis: a stand-alone C-subroutine , 1995 .

[53]  K. Lambeck,et al.  Geophysical evidence for 'thick-skinned' crustal deformation in central Australia , 1989, Nature.

[54]  C. Jaupart,et al.  The thermal structure and thickness of continental roots , 1999 .

[55]  R. Hillis,et al.  Topography, boundary forces, and the Indo‐Australian intraplate stress field , 1998 .

[56]  Carl Bowin,et al.  The relationship between bathymetry and gravity in the Atlantic Ocean , 1976 .

[57]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[58]  D. L. Anderson,et al.  Depth extent of cratons as inferred from tomographic studies , 1995 .

[59]  A. Vauchez,et al.  Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere , 1998 .

[60]  D. McKenzie,et al.  Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies , 1997 .

[61]  G. Bertotti,et al.  The influence of a stratified rheology on the flexural response of the lithosphere to (un)loading by extensional faulting. , 1998 .

[62]  K. Lambeck,et al.  Teleseismic travel time anomalies and crustal structure in central Australia , 1984 .

[63]  L. Dorman,et al.  Experimental isostasy: 1. Theory of the determination of the Earth's isostatic response to a concentrated load , 1970 .

[64]  B. Goleby,et al.  Structure and evolution of the Australian continent , 1998 .

[65]  J. Jeans,et al.  The Propagation of Earthquake Waves , 1923 .

[66]  J. Mareschal,et al.  Elastic thickness of the lithosphere in the Central Canadian Shield , 1999 .

[67]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[68]  F. Podmore,et al.  Mechanisms of isostatic compensation of the Zimbabwe and Kaapvaal cratons, the Limpopo Belt and the Mozambique basin , 1996 .

[69]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[70]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[71]  I. Tyler,et al.  Tectonic evolution of Proterozoic Australia , 1996 .

[72]  C. Murray,et al.  Regional geological interpretation of a digital coloured residual Bouguer gravity image of eastern Australia with a wavelength cut-off of 250 km , 1989 .

[73]  W. Munk,et al.  Tidal spectroscopy and prediction , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[74]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[75]  D. Forsyth,et al.  Mechanisms of isostatic compensation in the vicinity of the East African Rift, Kenya , 1987 .

[76]  G. Karner,et al.  Gravity anomalies and flexure of the lithosphere at mountain ranges , 1983 .

[77]  K. Lambeck,et al.  Gravity fields of the terrestrial planets: Long‐wavelength anomalies and tectonics , 1980 .

[78]  A. Wąs,et al.  An Analysis of Isostasy in the World's Oceans 1. Hawaiian-Emperor SeamountChain , 1978 .

[79]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[80]  D. Forsyth,et al.  Variations in effective elastic thickness of the North American lithosphere , 1990, Nature.

[81]  K. Lambeck Structure and evolution of the intracratonic basins of central Australia , 1983 .

[82]  P. Conaghan,et al.  Phanerozoic earth history of Australia , 1986 .

[83]  James N. Brune,et al.  Travel times, body waves, and normal modes of the earth , 1964 .

[84]  A. T. Walden,et al.  Improved low-frequency decay estimation using the multipaper spectral analysis method , 1990 .

[85]  S. Zhong Dynamics of crustal compensation and its influences on crustal isostasy , 1997 .

[86]  Mike Sandiford,et al.  Controls on the locus of intraplate deformation in central Australia , 1998 .

[87]  M. Zoback First‐ and second‐order patterns of stress in the lithosphere: The World Stress Map Project , 1992 .

[88]  Donald W. Forsyth,et al.  Subsurface loading and estimates of the flexural rigidity of continental lithosphere , 1985 .

[89]  Mike Sandiford,et al.  Intraplate deformation in central Australia, the link between subsidence and fault reactivation , 1999 .

[90]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .

[91]  R. Detrick,et al.  An analysis of isostasy in the world's oceans: 3. Aseismic ridges , 1979 .

[92]  Frank L. Vernon,et al.  Multitaper spectral analysis of high-frequency seismograms , 1987 .

[93]  J. Thorne,et al.  Long-term thermo-mechanical properties of the continental lithosphere , 1983, Nature.

[94]  R. Hilst,et al.  Upper-mantle shear velocity beneath eastern Australia from inversion of waveforms from SKIPPY portable arrays , 1996 .