Ternary rare-earth hydride oxides: stability in air and potential use as precursors for the synthesis of materials
暂无分享,去创建一个
[1] D. Sheptyakov,et al. HoHO: A Paramagnetic Air-Resistant Ionic Hydride with Ordered Anions. , 2021, Inorganic chemistry.
[2] H. Kohlmann. 4.9 Rare earth metal-based hydride materials , 2020 .
[3] H. Auer,et al. YHO, an Air-Stable Ionic Hydride. , 2019, Inorganic chemistry.
[4] M. Bertmer,et al. LiSr2SiO4H, an Air-Stable Hydride as Host for Eu(II) Luminescence. , 2018, Inorganic chemistry.
[5] H. Kohlmann,et al. The lanthanide hydride oxides SmHO and HoHO , 2018, Zeitschrift für Naturforschung B.
[6] S. Hosokawa,et al. Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis. , 2017, Journal of the American Chemical Society.
[7] D. Weber,et al. Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5. , 2017, Inorganic chemistry.
[8] T. Jüstel,et al. From metals to nitrides - Syntheses and reaction details of binary rare earth systems , 2017 .
[9] I. Tanaka,et al. Pure H– conduction in oxyhydrides , 2016, Science.
[10] J. Janek,et al. Oxide nitrides: From oxides to solids with mobile nitrogen ions , 2009 .
[11] R. Dronskowski,et al. γ‐TaON: eine metastabile Modifikation von Tantaloxidnitrid , 2007 .
[12] P. Wachter,et al. Magnetic interaction in GdN and GdN1−xOx , 1980 .
[13] N. J. Clark,et al. The cerium-nitrogen-oxygen system. Oxygen as a component in the “binary” Ce-N system at 950°C , 1974 .
[14] K. Hardcastle,et al. Rare Earth-Hydrogen Systems. IV. The Higher Hydride of Ytterbium, a New Type of Hydride , 1966 .
[15] H. Baernighausen. Gitterkonstanten und Raumgruppe der isotypen Verbindungen Eu(OH)2 · H2O, Sr(OH)2 · H2O und Ba(OH)2 · H2O , 1966 .
[16] N. Krikorian,et al. THE CRYSTAL STRUCTURE OF YTTRIUM NITRIDE , 1957 .