Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains

In this contribution, we coupled the isogeometric analysis to a reduced order modelling technique in order to provide a computationally efficient solution in parametric domains. In details, we adopt the free-form deformation method to obtain the parametric formulation of the domain and proper orthogonal decomposition with interpolation for the computational reduction of the model. This technique provides a real-time solution for any parameter by combining several solutions, in this case computed using isogeometric analysis on different geometrical configurations of the domain, properly mapped into a reference configuration. We underline that this reduced order model requires only the full-order solutions, making this approach non-intrusive. We present in this work the results of the application of this methodology to a heat conduction problem inside a deformable collector pipe.

[1]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  Gianluigi Rozza,et al.  Model Order Reduction: a survey , 2016 .

[4]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[5]  Stefan Menzel,et al.  On Shape Deformation Techniques for Simulation-Based Design Optimization , 2015 .

[6]  Gianluigi Rozza,et al.  EZyRB: Easy Reduced Basis method , 2018, J. Open Source Softw..

[7]  Gianluigi Rozza,et al.  Advances in reduced order methods for parametric industrial problems in computational fluid dynamics , 2018, 1811.08319.

[8]  Gianluigi Rozza,et al.  Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics , 2018, 1803.07377.

[9]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[10]  G. Rozza,et al.  Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation , 2018, International Journal of Computational Fluid Dynamics.

[11]  Gianluigi Rozza,et al.  An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment , 2018, 1801.06369.

[12]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[13]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[14]  Gianluigi Rozza,et al.  Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems , 2017, Advanced Modeling and Simulation in Engineering Sciences.

[15]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[16]  Jeroen A. S. Witteveen,et al.  Explicit Mesh Deformation Using Inverse Distance Weighting Interpolation , 2009 .

[17]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[18]  Gianluigi Rozza,et al.  Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization , 2016, J. Comput. Phys..

[19]  Simona Perotto,et al.  HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes , 2017 .

[20]  Karen Willcox,et al.  Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics , 2003 .

[21]  G. Rozza,et al.  Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods , 2017, 1711.10884.

[22]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[23]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[24]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[25]  Gianluigi Rozza,et al.  Certified Reduced Basis Method for Affinely Parametric Isogeometric Analysis NURBS Approximation , 2017, 1710.06148.

[26]  Simona Perotto,et al.  Hierarchical Local Model Reduction for Elliptic Problems: A Domain Decomposition Approach , 2010, Multiscale Model. Simul..

[27]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[28]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[29]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[30]  G. Rozza,et al.  An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics , 2018, 1810.12364.

[31]  Gianluigi Rozza,et al.  Model Order Reduction: a survey , 2016 .

[32]  W SederbergThomas,et al.  Free-form deformation of solid geometric models , 1986 .

[33]  Gianluigi Rozza,et al.  Reduced Basis Approximation for Shape Optimization in Thermal Flows with a Parametrized Polynomial Geometric Map , 2010 .

[34]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[35]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[36]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[37]  Simona Perotto,et al.  A POD‐selective inverse distance weighting method for fast parametrized shape morphing , 2017, International Journal for Numerical Methods in Engineering.

[38]  G. Rozza,et al.  POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder , 2017, 1701.03424.

[39]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[40]  Gianluigi Rozza,et al.  Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems , 2014 .

[41]  Luca Heltai,et al.  Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes , 2016, Advanced Modeling and Simulation in Engineering Sciences.

[42]  Gianluigi Rozza,et al.  Reduced Basis Methods for Uncertainty Quantification , 2017, SIAM/ASA J. Uncertain. Quantification.

[43]  Gianluigi Rozza,et al.  Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives , 2016 .

[44]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[45]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[46]  L. Heltai,et al.  Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils , 2015 .

[47]  A. Quarteroni,et al.  Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts , 2017, Biomechanics and Modeling in Mechanobiology.

[48]  T. Franz,et al.  Reduced-order models for aerodynamic applications, loads and MDO , 2018 .

[49]  Gianluigi Rozza,et al.  Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition , 2018, 1803.07368.

[50]  Alfio Quarteroni,et al.  Isogeometric analysis and proper orthogonal decomposition for parabolic problems , 2017, Numerische Mathematik.

[51]  Simona Perotto,et al.  Hi-POD Solution of Parametrized Fluid Dynamics Problems: Preliminary Results , 2017 .

[52]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[53]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[54]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[55]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[56]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[57]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .