SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
暂无分享,去创建一个
Masahiro Yoshida | Fabian J. Theis | Oliver Eickelberg | Kerstin B. Meyer | Daniel Reichart | Sarah A. Teichmann | Aviv Regev | Naftali Kaminski | Alvis Brazma | Joakim Lundeberg | Joachim L. Schultze | Fabian J Theis | Malte Kuhnemund | Ian Glass | Ludovic Vallier | Pascal Barbry | Jonathan G. Seidman | Christine E. Seidman | Jonathan A. Kropski | Alex K. Shalek | Zhichao Miao | Nicholas E. Banovich | Dana Pe’er | Orit Rozenblatt-Rosen | Majlinda Lako | Alexander M. Tsankov | Purushothama Rao Tata | Rachel Queen | Joseph Powell | Norbert Hubner | Christophe Bécavin | D. Pe’er | A. Regev | S. Teichmann | R. Xavier | S. Quake | Masahiro Yoshida | J. Seidman | A. Brazma | M. Krasnow | Zhichao Miao | O. Rozenblatt-Rosen | A. Shalek | J. Powell | I. Glass | K. Meyer | P. Horváth | Jason S. Spence | M. Haniffa | J. Lundeberg | M. Nawijn | M. Lako | S. Leroy | N. Kaminski | C. Samakovlis | C. Seidman | J. Ordovas-Montanes | T. Desai | T. Duong | J. Whitsett | Yan Xu | A. Tsankov | H. Schiller | Ravindra K. Gupta | N. Hubner | P. Barbry | O. Eickelberg | M. Rojas | L. Vallier | H. Maatz | M. Noseda | J. Schultze | J. Kropski | K. Saeb‐Parsy | M. Farzan | F. Sampaziotis | M. Seibold | Monika Litviňuková | C. Talavera-López | D. Reichart | Hongbo Zhang | G. Oudit | L. Zaragosi | F. Theis | J. Spence | P. Reyfman | N. Banovich | R. Xavier | C. Bécavin | A. Misharin | C. Falk | Darin Zerti | J. Collin | R. Queen | Malte Kuhnemund | Haeock Lee | Sten Linnarson | M. Nikolić | J. Rajagopal | P. Tata | E. Rawlins | D. Shepherd | Xin Sun | M. van den Berge | Kun Zhang | M. Berg | Ramnik Xavier | Muzlifah Haniffa | N. Huang | Michael Farzan | Waradon Sungnak | Ni Huang | Marijn Berg | Monika Litvinukova | Carlos Talavera-López | Henrike Maatz | Fotios Sampaziotis | Kaylee B. Worlock | Josephine L. Barnes | Nicholas E. Pascal Alvis Joseph Tushar J. Thu Elizabeth Oli Banovich Barbry Brazma Collin Desai Duon | Joseph Collin | Tushar J. Desai | Thu Elizabeth Duong | Christine Falk | Ravindra K. Gupta | Peter Horvath | Deborah Hung | Mark Krasnow | Haeock Lee | Sylvie Leroy | Sten Linnarson | Alexander V. Misharin | Martijn C. Nawijn | Marko Z. Nikolic | Michela Noseda | Jose Ordovas-Montanes | Gavin Y. Oudit | Steve Quake | Jay Rajagopal | Emma L. Rawlins | Paul A. Reyfman | Kourosh Saeb-Parsy | Christos Samakovlis | Herbert B. Schiller | Max A. Seibold | Douglas Shepherd | Jason Spence | Avi Spira | Xin Sun | Maarten van den Berge | Jeffrey Whitsett | Yan Xu | Laure-Emmanuelle Zaragosi | Darin Zerti | Hongbo Zhang | Kun Zhang | Mauricio Rojas | Francisco Figueiredo | D. Pe’er | J. Barnes | W. Sungnak | K. Worlock | Jay Rajagopal | Deborah T. Hung | A. Spira | Francisco Figueiredo | J. Powell | Kun Zhang | M. Litviňuková | Ravindra K. Gupta | M. Rojas | D. Reichart | J. Ordovas-Montañes | I. Glass | J. Powell | Xin Sun | Sarah A. Teichmann | P. R. Tata | Christine Falk | M. Yoshida | Nicholas E. Pascal Alvis Joseph Tushar J. Thu Elizabeth Oli Banovich Barbry Brazma Collin Desai Duon
[1] Kang Zhang,et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding , 2020, Nature Medicine.
[2] Jie Hao,et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection , 2020, Frontiers of Medicine.
[3] Jizhen Ren,et al. Clinical characteristics of hospitalized patients with SARS‐CoV‐2 infection: A single arm meta‐analysis , 2020, Journal of medical virology.
[4] Elisabeth Mahase. Covid-19: UK records first death, as world’s cases exceed 100 000 , 2020, BMJ.
[5] G. Herrler,et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.
[6] K. Yuen,et al. Clinical Characteristics of Coronavirus Disease 2019 in China , 2020, The New England journal of medicine.
[7] Heshui Shi,et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet Infectious Diseases.
[8] Shuye Zhang,et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.
[9] Jiyuan Zhang,et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome , 2020, The Lancet Respiratory Medicine.
[10] Huixia Yang,et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records , 2020, The Lancet.
[11] Kai Zhao,et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.
[12] M. Killerby,et al. Middle East Respiratory Syndrome Coronavirus Transmission , 2020, Emerging infectious diseases.
[13] Christian Drosten,et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells , 2020, bioRxiv.
[14] P. Vollmar,et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany , 2020, The New England journal of medicine.
[15] Ting Yu,et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet.
[16] Jing Zhao,et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia , 2020, The New England journal of medicine.
[17] Q. Pham,et al. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam , 2020, The New England journal of medicine.
[18] S. Teichmann,et al. A cell atlas of human thymic development defines T cell repertoire formation , 2020, Science.
[19] W. Zuo,et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov , 2020, bioRxiv.
[20] G. Gao,et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.
[21] S. Lo,et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster , 2020, The Lancet.
[22] Y. Hu,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China , 2020, The Lancet.
[23] Wei Zhang,et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes , 2020, Emerging microbes & infections.
[24] C. Althaus,et al. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[25] Ricardo J. Miragaia,et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation , 2019, Genome Biology.
[26] D. Pe’er,et al. A single-cell atlas of the human healthy airways , 2019, bioRxiv.
[27] Sarah A. Teichmann,et al. Spatiotemporal immune zonation of the human kidney , 2019, Science.
[28] David McDonald,et al. Decoding human fetal liver haematopoiesis , 2019, Nature.
[29] Aviv Regev,et al. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.
[30] Andrew P. Voigt,et al. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. , 2019, Experimental eye research.
[31] I. Wilson,et al. N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses , 2019, Cell reports.
[32] Fabian J Theis,et al. A cellular census of human lungs identifies novel cell states in health and in asthma , 2019, Nature Medicine.
[33] Yukiko Shimizu,et al. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection , 2019, Journal of Virology.
[34] C. Marquette,et al. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures , 2019, Development.
[35] Judy H. Cho,et al. Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy , 2019, Cell.
[36] Fan Zhang,et al. Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.
[37] Kerstin B. Meyer,et al. Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.
[38] Gary D Bader,et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations , 2018, Nature Communications.
[39] Geoffrey J Maher,et al. The adult human testis transcriptional cell atlas , 2018, Cell Research.
[40] Venkat S. Malladi,et al. A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra , 2018, bioRxiv.
[41] Charles J. Vaske,et al. Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution , 2018, Cell reports.
[42] Paul Hoffman,et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.
[43] Fabian J Theis,et al. SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.
[44] Aviv Regev,et al. Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.
[45] 中山 優吏佳. Cincinnati Children’s Hospital Medical Centerでの海外実習を終えて , 2017 .
[46] Samuel L. Wolock,et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.
[47] A. Kucharski,et al. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. , 2015, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[48] Yanchen Zhou,et al. Protease inhibitors targeting coronavirus and filovirus entry , 2015, Antiviral Research.
[49] Christian Drosten,et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC , 2013, Nature.
[50] P. Nelson,et al. Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts , 2012, PloS one.
[51] Makoto Takeda,et al. Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2 , 2010, Journal of Virology.
[52] J. Penninger,et al. Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. , 2010, Circulation journal : official journal of the Japanese Circulation Society.
[53] Christian Drosten,et al. Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63 , 2009, Journal of Virology.
[54] L. Gakhar,et al. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. , 2009, American journal of physiology. Lung cellular and molecular physiology.
[55] S. Blower,et al. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) , 2009, BMC medicine.
[56] F. Fyhrquist,et al. Renin‐angiotensin system revisited , 2008, Journal of internal medicine.
[57] Chengyu Jiang,et al. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2 , 2008, Virus Research.
[58] T. Sasazuki,et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry , 2008, Proceedings of the National Academy of Sciences.
[59] Martin Paul,et al. Physiology of local renin-angiotensin systems. , 2006, Physiological reviews.
[60] J. Penninger,et al. Angiotensin-converting enzyme 2 in lung diseases , 2006, Current Opinion in Pharmacology.
[61] T. Ogihara,et al. Deletion of Angiotensin-Converting Enzyme 2 Accelerates Pressure Overload–Induced Cardiac Dysfunction by Increasing Local Angiotensin II , 2006, Hypertension.
[62] K. To,et al. How the SARS coronavirus causes disease: host or organism? , 2005, The Journal of pathology.
[63] N. Hooper,et al. Tumor Necrosis Factor-α Convertase (ADAM17) Mediates Regulated Ectodomain Shedding of the Severe-acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-converting Enzyme-2 (ACE2) , 2005, Journal of Biological Chemistry.
[64] Mark Chappell,et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury , 2005, Nature Medicine.
[65] Arthur S Slutsky,et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure , 2005, Nature.
[66] Chengsheng Zhang,et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 , 2005, The EMBO journal.
[67] T. Reudelhuber. The renin–angiotensin system: peptides and enzymes beyond angiotensin II , 2005, Current opinion in nephrology and hypertension.
[68] Georges Daube,et al. Euro Surveillance : Bulletin Européen sur les Maladies Transmissibles , 2005 .
[69] J. Wallinga,et al. Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures , 2004, American journal of epidemiology.
[70] G. Navis,et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis , 2004, The Journal of pathology.
[71] R. Chambers,et al. Angiotensin II and the fibroproliferative response to acute lung injury. , 2004, American journal of physiology. Lung cellular and molecular physiology.
[72] John L. Sullivan,et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus , 2003, Nature.
[73] Thomas Walther,et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[74] R. Marshall. The pulmonary renin-angiotensin system. , 2003, Current pharmaceutical design.
[75] Nigel M. Hooper,et al. A Human Homolog of Angiotensin-converting Enzyme , 2000, The Journal of Biological Chemistry.
[76] K. Robison,et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 , 2000, Circulation research.
[77] K. Andersson,et al. Conversion of Angiotensin I to Angiotensin II by Chymase Activity in Human Pulmonary Membranes , 1997, Peptides.
[78] B. Zimmerman,et al. Tissue renin-angiotensin system: a site of drug action? , 1997, Annual review of pharmacology and toxicology.
[79] A. Look,et al. Human aminopeptidase N is a receptor for human coronavirus 229E , 1992, Nature.
[80] W. Martin,et al. Bronchoalveolar lavage fluid angiotensin-converting enzyme in interstitial lung diseases. , 1990, The American review of respiratory disease.
[81] J. Hendley,et al. Coronavirus infections in working adults. Eight-year study with 229 E and OC 43. , 1972, The American review of respiratory disease.