SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes

Masahiro Yoshida | Fabian J. Theis | Oliver Eickelberg | Kerstin B. Meyer | Daniel Reichart | Sarah A. Teichmann | Aviv Regev | Naftali Kaminski | Alvis Brazma | Joakim Lundeberg | Joachim L. Schultze | Fabian J Theis | Malte Kuhnemund | Ian Glass | Ludovic Vallier | Pascal Barbry | Jonathan G. Seidman | Christine E. Seidman | Jonathan A. Kropski | Alex K. Shalek | Zhichao Miao | Nicholas E. Banovich | Dana Pe’er | Orit Rozenblatt-Rosen | Majlinda Lako | Alexander M. Tsankov | Purushothama Rao Tata | Rachel Queen | Joseph Powell | Norbert Hubner | Christophe Bécavin | D. Pe’er | A. Regev | S. Teichmann | R. Xavier | S. Quake | Masahiro Yoshida | J. Seidman | A. Brazma | M. Krasnow | Zhichao Miao | O. Rozenblatt-Rosen | A. Shalek | J. Powell | I. Glass | K. Meyer | P. Horváth | Jason S. Spence | M. Haniffa | J. Lundeberg | M. Nawijn | M. Lako | S. Leroy | N. Kaminski | C. Samakovlis | C. Seidman | J. Ordovas-Montanes | T. Desai | T. Duong | J. Whitsett | Yan Xu | A. Tsankov | H. Schiller | Ravindra K. Gupta | N. Hubner | P. Barbry | O. Eickelberg | M. Rojas | L. Vallier | H. Maatz | M. Noseda | J. Schultze | J. Kropski | K. Saeb‐Parsy | M. Farzan | F. Sampaziotis | M. Seibold | Monika Litviňuková | C. Talavera-López | D. Reichart | Hongbo Zhang | G. Oudit | L. Zaragosi | F. Theis | J. Spence | P. Reyfman | N. Banovich | R. Xavier | C. Bécavin | A. Misharin | C. Falk | Darin Zerti | J. Collin | R. Queen | Malte Kuhnemund | Haeock Lee | Sten Linnarson | M. Nikolić | J. Rajagopal | P. Tata | E. Rawlins | D. Shepherd | Xin Sun | M. van den Berge | Kun Zhang | M. Berg | Ramnik Xavier | Muzlifah Haniffa | N. Huang | Michael Farzan | Waradon Sungnak | Ni Huang | Marijn Berg | Monika Litvinukova | Carlos Talavera-López | Henrike Maatz | Fotios Sampaziotis | Kaylee B. Worlock | Josephine L. Barnes | Nicholas E. Pascal Alvis Joseph Tushar J. Thu Elizabeth Oli Banovich Barbry Brazma Collin Desai Duon | Joseph Collin | Tushar J. Desai | Thu Elizabeth Duong | Christine Falk | Ravindra K. Gupta | Peter Horvath | Deborah Hung | Mark Krasnow | Haeock Lee | Sylvie Leroy | Sten Linnarson | Alexander V. Misharin | Martijn C. Nawijn | Marko Z. Nikolic | Michela Noseda | Jose Ordovas-Montanes | Gavin Y. Oudit | Steve Quake | Jay Rajagopal | Emma L. Rawlins | Paul A. Reyfman | Kourosh Saeb-Parsy | Christos Samakovlis | Herbert B. Schiller | Max A. Seibold | Douglas Shepherd | Jason Spence | Avi Spira | Xin Sun | Maarten van den Berge | Jeffrey Whitsett | Yan Xu | Laure-Emmanuelle Zaragosi | Darin Zerti | Hongbo Zhang | Kun Zhang | Mauricio Rojas | Francisco Figueiredo | D. Pe’er | J. Barnes | W. Sungnak | K. Worlock | Jay Rajagopal | Deborah T. Hung | A. Spira | Francisco Figueiredo | J. Powell | Kun Zhang | M. Litviňuková | Ravindra K. Gupta | M. Rojas | D. Reichart | J. Ordovas-Montañes | I. Glass | J. Powell | Xin Sun | Sarah A. Teichmann | P. R. Tata | Christine Falk | M. Yoshida | Nicholas E. Pascal Alvis Joseph Tushar J. Thu Elizabeth Oli Banovich Barbry Brazma Collin Desai Duon

[1]  Kang Zhang,et al.  Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding , 2020, Nature Medicine.

[2]  Jie Hao,et al.  Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection , 2020, Frontiers of Medicine.

[3]  Jizhen Ren,et al.  Clinical characteristics of hospitalized patients with SARS‐CoV‐2 infection: A single arm meta‐analysis , 2020, Journal of medical virology.

[4]  Elisabeth Mahase Covid-19: UK records first death, as world’s cases exceed 100 000 , 2020, BMJ.

[5]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[6]  K. Yuen,et al.  Clinical Characteristics of Coronavirus Disease 2019 in China , 2020, The New England journal of medicine.

[7]  Heshui Shi,et al.  Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet Infectious Diseases.

[8]  Shuye Zhang,et al.  Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.

[9]  Jiyuan Zhang,et al.  Pathological findings of COVID-19 associated with acute respiratory distress syndrome , 2020, The Lancet Respiratory Medicine.

[10]  Huixia Yang,et al.  Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records , 2020, The Lancet.

[11]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[12]  M. Killerby,et al.  Middle East Respiratory Syndrome Coronavirus Transmission , 2020, Emerging infectious diseases.

[13]  Christian Drosten,et al.  The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells , 2020, bioRxiv.

[14]  P. Vollmar,et al.  Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany , 2020, The New England journal of medicine.

[15]  Ting Yu,et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet.

[16]  Jing Zhao,et al.  Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia , 2020, The New England journal of medicine.

[17]  Q. Pham,et al.  Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam , 2020, The New England journal of medicine.

[18]  S. Teichmann,et al.  A cell atlas of human thymic development defines T cell repertoire formation , 2020, Science.

[19]  W. Zuo,et al.  Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov , 2020, bioRxiv.

[20]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[21]  S. Lo,et al.  A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster , 2020, The Lancet.

[22]  Y. Hu,et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China , 2020, The Lancet.

[23]  Wei Zhang,et al.  Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes , 2020, Emerging microbes & infections.

[24]  C. Althaus,et al.  Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[25]  Ricardo J. Miragaia,et al.  scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation , 2019, Genome Biology.

[26]  D. Pe’er,et al.  A single-cell atlas of the human healthy airways , 2019, bioRxiv.

[27]  Sarah A. Teichmann,et al.  Spatiotemporal immune zonation of the human kidney , 2019, Science.

[28]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[29]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[30]  Andrew P. Voigt,et al.  Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. , 2019, Experimental eye research.

[31]  I. Wilson,et al.  N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses , 2019, Cell reports.

[32]  Fabian J Theis,et al.  A cellular census of human lungs identifies novel cell states in health and in asthma , 2019, Nature Medicine.

[33]  Yukiko Shimizu,et al.  TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection , 2019, Journal of Virology.

[34]  C. Marquette,et al.  Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures , 2019, Development.

[35]  Judy H. Cho,et al.  Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy , 2019, Cell.

[36]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[37]  Kerstin B. Meyer,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[38]  Gary D Bader,et al.  Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations , 2018, Nature Communications.

[39]  Geoffrey J Maher,et al.  The adult human testis transcriptional cell atlas , 2018, Cell Research.

[40]  Venkat S. Malladi,et al.  A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra , 2018, bioRxiv.

[41]  Charles J. Vaske,et al.  Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution , 2018, Cell reports.

[42]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[43]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[44]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[45]  中山 優吏佳 Cincinnati Children’s Hospital Medical Centerでの海外実習を終えて , 2017 .

[46]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[47]  A. Kucharski,et al.  The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. , 2015, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[48]  Yanchen Zhou,et al.  Protease inhibitors targeting coronavirus and filovirus entry , 2015, Antiviral Research.

[49]  Christian Drosten,et al.  Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC , 2013, Nature.

[50]  P. Nelson,et al.  Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts , 2012, PloS one.

[51]  Makoto Takeda,et al.  Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2 , 2010, Journal of Virology.

[52]  J. Penninger,et al.  Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. , 2010, Circulation journal : official journal of the Japanese Circulation Society.

[53]  Christian Drosten,et al.  Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63 , 2009, Journal of Virology.

[54]  L. Gakhar,et al.  Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. , 2009, American journal of physiology. Lung cellular and molecular physiology.

[55]  S. Blower,et al.  Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) , 2009, BMC medicine.

[56]  F. Fyhrquist,et al.  Renin‐angiotensin system revisited , 2008, Journal of internal medicine.

[57]  Chengyu Jiang,et al.  Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2 , 2008, Virus Research.

[58]  T. Sasazuki,et al.  Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry , 2008, Proceedings of the National Academy of Sciences.

[59]  Martin Paul,et al.  Physiology of local renin-angiotensin systems. , 2006, Physiological reviews.

[60]  J. Penninger,et al.  Angiotensin-converting enzyme 2 in lung diseases , 2006, Current Opinion in Pharmacology.

[61]  T. Ogihara,et al.  Deletion of Angiotensin-Converting Enzyme 2 Accelerates Pressure Overload–Induced Cardiac Dysfunction by Increasing Local Angiotensin II , 2006, Hypertension.

[62]  K. To,et al.  How the SARS coronavirus causes disease: host or organism? , 2005, The Journal of pathology.

[63]  N. Hooper,et al.  Tumor Necrosis Factor-α Convertase (ADAM17) Mediates Regulated Ectodomain Shedding of the Severe-acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-converting Enzyme-2 (ACE2) , 2005, Journal of Biological Chemistry.

[64]  Mark Chappell,et al.  A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury , 2005, Nature Medicine.

[65]  Arthur S Slutsky,et al.  Angiotensin-converting enzyme 2 protects from severe acute lung failure , 2005, Nature.

[66]  Chengsheng Zhang,et al.  Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 , 2005, The EMBO journal.

[67]  T. Reudelhuber The renin–angiotensin system: peptides and enzymes beyond angiotensin II , 2005, Current opinion in nephrology and hypertension.

[68]  Georges Daube,et al.  Euro Surveillance : Bulletin Européen sur les Maladies Transmissibles , 2005 .

[69]  J. Wallinga,et al.  Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures , 2004, American journal of epidemiology.

[70]  G. Navis,et al.  Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis , 2004, The Journal of pathology.

[71]  R. Chambers,et al.  Angiotensin II and the fibroproliferative response to acute lung injury. , 2004, American journal of physiology. Lung cellular and molecular physiology.

[72]  John L. Sullivan,et al.  Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus , 2003, Nature.

[73]  Thomas Walther,et al.  Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Marshall The pulmonary renin-angiotensin system. , 2003, Current pharmaceutical design.

[75]  Nigel M. Hooper,et al.  A Human Homolog of Angiotensin-converting Enzyme , 2000, The Journal of Biological Chemistry.

[76]  K. Robison,et al.  A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 , 2000, Circulation research.

[77]  K. Andersson,et al.  Conversion of Angiotensin I to Angiotensin II by Chymase Activity in Human Pulmonary Membranes , 1997, Peptides.

[78]  B. Zimmerman,et al.  Tissue renin-angiotensin system: a site of drug action? , 1997, Annual review of pharmacology and toxicology.

[79]  A. Look,et al.  Human aminopeptidase N is a receptor for human coronavirus 229E , 1992, Nature.

[80]  W. Martin,et al.  Bronchoalveolar lavage fluid angiotensin-converting enzyme in interstitial lung diseases. , 1990, The American review of respiratory disease.

[81]  J. Hendley,et al.  Coronavirus infections in working adults. Eight-year study with 229 E and OC 43. , 1972, The American review of respiratory disease.