A review on advances in alkali metal thermal to electric converters (AMTECs)

The alkali metal thermal to electric converter (AMTEC) is one of the most promising technologies for direct conversion of thermal energy to electricity and has been receiving attention in the field of energy conversion and utilization in the past several decades. This paper aims to present a comprehensive review of the state of the art in the research and development of the AMTEC, including its working principles and types, historical development and applications, analytical models, working fluids, electrode materials, as well as the performance and efficiency improvement. The current two major problems encountered by the AMTEC, the time-dependent power degradation and relatively low efficiency compared to its theoretical value, are discussed in depth. In addition, a brief comparison of the AMTEC with other direct thermal to electric converters (DTECs), such as the thermoelectrics converter (TEC), thermionics converter, and thermophotovoltaics converter, is given, and combinations of different DTECs to further improve DTECs' power generation and overall conversion efficiency are demonstrated. Future research and development directions and the issues that need to be further investigated are also suggested. It is believed that this comprehensive review will be beneficial to the design, simulation, analysis, performance assessment, and applications of various types of AMTECs. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  C. P. Bankston,et al.  Kinetics and transport at AMTEC electrodes. I - The interfacial impedance model. [alkali metal thermoelectric converters] , 1990 .

[2]  Alfred Schock,et al.  Parametric analyses of AMTEC multitube cells and recommendation for revised cell design , 1997 .

[3]  Mohamed S. El-Genk,et al.  Capillary Limit of Evaporator Wick in Alkali Metal Thermal-to-Electric Converters , 2002 .

[4]  Kuan Chen,et al.  Optimization of multiple‐module thermoelectric coolers using artificial‐intelligence techniques , 2002 .

[5]  M.A.K. Lodhi,et al.  Use of waste heat of TIEC as the power source for AMTEC , 2006 .

[6]  M.A.K. Lodhi,et al.  Mathematical modeling for a thermionic‐AMTEC cascade system , 1996 .

[7]  Clay Mayberry,et al.  Experimental investigation of multi-AMTEC cell ground demonstration converter systems based on PX-3 and PX-5 series AMTEC cells , 2008 .

[8]  Mohamed S. El-Genk,et al.  Analyses of static energy conversion systems for small nuclear power plants , 2003 .

[9]  Margaret A. K. Ryan,et al.  Advances in electrode materials for AMTEC , 2001 .

[10]  Akio Kato,et al.  Materials for electrode of alkali metal thermoelectric converter (AMTEC) (II) , 1990 .

[11]  P. Nicholson,et al.  The mixed alkali effect in (Na+−K+) β″-alumina , 1987 .

[12]  R. Knödler,et al.  Porous TiB2 electrodes for the alkali metal thermoelectric convertor , 1992 .

[13]  Margaret A. K. Ryan,et al.  Metallurgical examination of an AMTEC unit , 2001 .

[14]  Mohamed S. El-Genk,et al.  An analytical model for liquid-anode and vapor-anode AMTEC converters , 1997 .

[15]  Robert K. Sievers,et al.  Update of the design of the AMTEC converter for use in AMTEC Radioisotope Power Systems , 2001 .

[16]  M.A.K. Lodhi,et al.  Characteristics of electrodes materials and their lifetime modeling for AMTEC , 2001 .

[17]  Prasanna Vijayaraghavan,et al.  Power degradation and performance evaluation of BASE in AMTEC , 2000 .

[18]  M.A.K. Lodhi,et al.  Simulation and analysis of time-dependent degradation behavior of AMTEC , 2001 .

[19]  C. P. Bankston,et al.  Kinetics and transport at AMTEC electrodes. II - Temperature dependence of the interfacial impedance of Na(g)/porous Mo/Na-Beta-double prime alumina , 1990 .

[20]  Akio Kato,et al.  LaB6 and TiB2 electrodes for the alkali metal thermoelectric converter , 1998 .

[21]  C. P. Bankston,et al.  High Power Density Performance of WPt and WRh Electrodes in the Alkali Metal Thermoelectric Converter , 1989 .

[22]  R. M. Williams,et al.  Advanced electrodes for AMTEC , 2008 .

[23]  A. Daloglu,et al.  Time-dependent BASE performance and power degradation in AMTEC , 2001 .

[24]  T. Cole,et al.  Thermoelectric Energy Conversion with Solid Electrolytes , 1983, Science.

[25]  Mohamed S. El-Genk,et al.  Analysis of a vapor anode, multi-tube, potassium refractory AMTEC converter for space applications , 2001 .

[26]  Michael Schuller,et al.  Vacuum testing of high efficiency multi-base tube AMTEC cells: February 1997–October 1997 , 2008 .

[27]  M.A.K. Lodhi,et al.  An overview of advanced space/terrestrial power generation device: AMTEC , 2001 .

[28]  Margaret A. K. Ryan,et al.  Lifetimes of AMTEC electrodes: Molybdenum, rhodium-tungsten, and titanium nitride , 2001 .

[29]  Terry J. Hendricks,et al.  Development & experimental validation of a SINDA/FLUINT thermal/fluid/electrical model of a multi-tube AMTEC cell , 2008 .

[30]  C. Huang,et al.  Performance analysis of a potassium-base AMTEC cell , 1998 .

[31]  James E. Avery,et al.  Low cost high power GaSB photovoltaic cells , 1997 .

[32]  Mohamed S. El-Genk,et al.  Design optimization and integration of nickel/Haynes-25 AMTEC cells into radioisotope power systems , 2000 .

[33]  M.A.K. Lodhi,et al.  Temperature effect on lifetimes of AMTEC electrodes , 2007 .

[34]  A. Thakoor,et al.  The Role of Oxygen in Porous Molybdenum Electrodes for the Alkali Metal Thermoelectric Converter , 1986 .

[35]  L. D. Chitwood,et al.  Oxidation of Mo-Re at reduced oxygen pressures , 2001 .

[36]  Mohamed S. El-Genk,et al.  Radiation heat transfer in multitube, alkali-metal thermal-to-electric converter , 1999 .

[37]  Mohamed S. El-Genk,et al.  A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state , 1996 .

[38]  M.A.K. Lodhi,et al.  Optimization of the TIEC/AMTEC cascade cell for high efficiency , 2006 .

[39]  Mohamed S. El-Genk,et al.  AMTEC/TE static converters for high energy utilization, small nuclear power plants , 2004 .

[40]  P. S. Nicholson,et al.  Electrical conductivity of mixed alkali (Na+−K+)β-alumina , 1987 .

[41]  M.A.K. Lodhi,et al.  Temperature-dependent grain growth model for AMTEC electrodes , 2004 .

[42]  Robert W. Fletcher,et al.  Recent Developments in Mixed Ionic and Electronic Conducting Electrodes for the Alkali Metal Thermal Electric Converter (AMTEC) , 2003 .

[43]  K. Tsuchida,et al.  Ceramic electrodes for an alkali metal thermo-electric converter (AMTEC) , 1993 .

[44]  N. H. Juul View Factors in Radiation Between Two Parallel Oriented Cylinders of Finite Lengths , 1982 .

[45]  M. A. Ryan,et al.  Direct thermal-to-electric energy conversion for outer planet spacecraft , 2002 .

[46]  Margaret A. K. Ryan,et al.  The thermal stability of sodium beta″-Alumina solid electrolyte ceramic in AMTEC cells , 1999 .

[47]  Mohamed S. El-Genk,et al.  Sodium vapor flow regimes and pressure losses on cathode side of multitube AMTEC cell , 2008 .

[48]  Margaret A. K. Ryan,et al.  Lifetime modeling of TiN electrodes for AMTEC cells , 2008 .

[49]  Mohamed S. El-Genk,et al.  Performance comparison of potassium and sodium vapor anode, multi-tube AMTEC converters , 2002 .

[50]  Mohamed S. El-Genk,et al.  Electrical breakdown experiments with application to alkali metal thermal-to-electric converters , 2003 .

[51]  Margaret A. K. Ryan,et al.  Potassium beta-double-prime-alumina/ potassium/ molybdenum electrochemical cells , 1994 .

[52]  K. Qiu,et al.  Thermophotovoltaic power generation systems using natural gas-fired radiant burners , 2007 .

[53]  Mohamed S. El-Genk,et al.  Analysis of test results of a ground demonstration of a Pluto/Express power generator , 1999 .

[54]  Mohamed S. El-Genk,et al.  A performance comparison of SiGe and skutterudite based segmented thermoelectric devices , 2002 .

[55]  Mohamed S. El-Genk,et al.  Design Optimization of High‐Power, Liquid Anode AMTEC , 2003 .

[56]  Mohamed S. El-Genk,et al.  Super-alloy, AMTEC cells for the pluto/express mission , 2008 .

[57]  Neill Weber,et al.  A thermoelectric device based on beta-alumina solid electrolyte , 1974 .

[58]  R. K. Sievers,et al.  AMTEC powered residential furnace and auxiliary power , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[59]  Mohamed S. El-Genk,et al.  Sodium vapor pressure losses in a multitube, alkali-metal thermal-to-electric converter , 1999 .

[60]  M. Lodhi,et al.  Design and material variation for an improved power output of AMTEC cells , 2001 .

[61]  Mohamed S. El-Genk,et al.  Radiation/conduction model for multitube AMTEC cells , 2008 .

[62]  Dongqing Li,et al.  Optimization of a combined thermionic–thermoelectric generator , 2003 .

[63]  Mohamed S. El-Genk,et al.  Performance analysis of Pluto/Express, multitube AMTEC cells , 1999 .

[64]  H. Noravian,et al.  Coupled thermal, electrical, and fluid flow analyses of AMTEC multitube cell with adiabatic side wall , 1997 .

[65]  M.A.K. Lodhi,et al.  The role of electrodes in power degradation of AMTEC: analysis and simulation , 2001 .

[66]  J. Tournier,et al.  An electric model of a vapour anode, multitube alkali–metal thermal-to-electric converter , 1999 .

[67]  Mohamed S. El-Genk,et al.  Performance analyses of an Nb–1Zr/C-103 vapor anode multi-tube alkali-metal thermal-to-electric conversion cell , 2001 .

[68]  Lia Kouchachvili,et al.  Improving the efficiency of pyroelectric conversion , 2008 .

[69]  Yu-Bin Chen,et al.  Microscale radiation in thermophotovoltaic devices—A review , 2007 .

[70]  Hitoshi Naito,et al.  Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system , 1996 .

[71]  Margaret A. K. Ryan,et al.  Performance parameters of TiN electrodes for AMTEC cells , 2008 .

[72]  M.A.K. Lodhi,et al.  Performance parameters of material studies for AMTEC cell , 2000 .

[73]  A. Barkan,et al.  Potassium AMTEC Cell Performance , 1999 .

[74]  J. R. White Comparing solar energy alternatives , 1984 .