Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices

We prove universality at the edge of the spectrum for unitary (β = 2), orthogonal (β = 1), and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e−V(x) where V is a polynomial, V(x) = κ2mx2m + · · ·, κ2m > 0. The precise statement of our results is given in Theorem 1.1 and Corollaries 1.2 and 1.4 below. For the same class of weights, a proof of universality in the bulk of the spectrum is given in [12] for the unitary ensembles and in [9] for the orthogonal and symplectic ensembles.

[1]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[2]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[3]  M. Vanlessen Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005, math/0504604.

[4]  Tom Claeys,et al.  Universality of the double scaling limit in random matrix models , 2005 .

[5]  L. M.,et al.  A Method of Integration over Matrix Variables , 2005 .

[6]  P. Deift,et al.  Universality in Random Matrix Theory for orthogonal and symplectic ensembles , 2004, math-ph/0411075.

[7]  Alexandre Stojanovic Errata: “Universality in Orthogonal and Symplectic Invariant Matrix Models with Quartic Potential” , 2004 .

[8]  C. Tracy,et al.  Matrix kernels for the Gaussian orthogonal and symplectic ensembles , 2004, math-ph/0405035.

[9]  C. Tracy,et al.  Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.

[10]  Mark Adler,et al.  Toda versus Pfaff lattice and related polynomials , 2002 .

[11]  P. Forrester,et al.  Classical Skew Orthogonal Polynomials and Random Matrices , 1999, solv-int/9907001.

[12]  Alexandre Stojanovic Universality in Orthogonal and Symplectic Invariant Matrix Models with Quartic Potential , 2000 .

[13]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[14]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[15]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[16]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[17]  P. Forrester,et al.  Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges , 1998, cond-mat/9811142.

[18]  H. Widom On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1998, solv-int/9804005.

[19]  C. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998, solv-int/9804004.

[20]  J. Verbaarschot,et al.  Universality in Chiral Random Matrix Theory at {beta} = 1 and {beta} = 4 , 1998, hep-th/9801042.

[21]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[22]  V. Freilikher,et al.  UNIVERSALITY IN INVARIANT RANDOM-MATRIX MODELS: EXISTENCE NEAR THE SOFT EDGE , 1997, chao-dyn/9701005.

[23]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[24]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[25]  C. Tracy,et al.  On orthogonal and symplectic matrix ensembles , 1995, solv-int/9509007.

[26]  Hackenbroich,et al.  Universality of random-matrix results for non-Gaussian ensembles. , 1994, Physical review letters.

[27]  C. Beenakker Universality of Brezin and Zee's spectral correlator , 1993, cond-mat/9310010.

[28]  C. Tracy,et al.  Fredholm determinants, differential equations and matrix models , 1993, hep-th/9306042.

[29]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[30]  A. Zee,et al.  Universality of the correlations between eigenvalues of large random matrices , 1993 .

[31]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[32]  M. Wadati,et al.  Correlation Functions of Random Matrix Ensembles Related to Classical Orthogonal Polynomials. III , 1992 .

[33]  P. Deift,et al.  A steepest descent method for oscillatory Riemann-Hilbert problems , 1992, math/9201261.

[34]  G. Moore Matrix Models of 2D Gravity and Isomonodromic Deformation , 2013 .

[35]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[36]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[37]  M. L. Mehta,et al.  A method of integration over matrix variables: IV , 1991 .

[38]  E. Rakhmanov,et al.  ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE REAL AXIS , 1984 .

[39]  Hrushikesh Narhar Mhaskar,et al.  Extremal problems for polynomials with exponential weights , 1984 .

[40]  B. Simon Trace ideals and their applications , 1979 .

[41]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[42]  M. L. Mehta,et al.  A note on correlations between eigenvalues of a random matrix , 1971 .

[43]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[44]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .