A new proof for Koch and Tataru's result on the well-posedness of Navier-Stokes equations in $BMO^{-1}$

We give a new proof of a well-known result of Koch and Tataru on the well-posedness of Navier-Stokes equations in $\R^n$ with small initial data in $BMO^{-1}(\R^n)$. The proof is formulated operator theoretically and does not make use of self-adjointness of the Laplacian.

[1]  Wei Liu,et al.  Local and global well-posedness of SPDE with generalized coercivity conditions☆ , 2012, 1202.0019.

[2]  P. Auscher,et al.  Singular integral operators on tent spaces , 2011, 1112.4292.

[3]  P. Auscher,et al.  Conical stochastic maximal $L^p$-regularity for $1 \leq p \lt \infty$ , 2011, 1112.3196.

[4]  P. Auscher,et al.  The maximal regularity operator on tent spaces , 2010, 1011.1748.

[5]  T. Yoneda,et al.  Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near BMO−1 , 2010 .

[6]  S. Mayboroda,et al.  Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces , 2010, 1002.0792.

[7]  P. Auscher,et al.  Remarks on Maximal Regularity , 2009, 0912.4482.

[8]  M. Mitrea,et al.  The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains , 2009, Differential and Integral Equations.

[9]  H. Koch,et al.  Geometric flows with rough initial data , 2009, 0902.1488.

[10]  J. Bourgain,et al.  Ill-posedness of the Navier-Stokes equations in a critical space in 3D , 2008, 0807.0882.

[11]  H. Bahouri,et al.  The Heat Kernel and Frequency Localized Functions on the Heisenberg Group , 2008, 0804.0340.

[12]  Bernhard H. Haak,et al.  On Kato’s Method for Navier–Stokes Equations , 2007, 0709.2067.

[13]  J. Neerven,et al.  Conical square function estimates in UMD Banach spaces and applications to H∞-functional calculi , 2007, 0709.1350.

[14]  S. Mayboroda,et al.  Hardy and BMO spaces associated to divergence form elliptic operators , 2006, math/0611804.

[15]  P. Auscher,et al.  Hardy Spaces of Differential Forms on Riemannian Manifolds , 2006, math/0611334.

[16]  Pierre Gilles Lemarié-Rieusset,et al.  Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique , 2005 .

[17]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[18]  Marius Mitrea,et al.  Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .

[19]  Pierre Gilles Lemarié-Rieusset,et al.  Unicité dans L3(R3) et d'autres espaces fonctionnels limites pour Navier-Stokes. , 2000 .

[20]  P. Tchamitchian,et al.  Espaces critiques pour le syst eme des equations de Navier-Stokes incompressibles , 1999, 0812.1158.

[21]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[22]  Y. Meyer,et al.  Some New Function Spaces and Their Applications to Harmonic Analysis , 1985 .

[23]  E. Stein,et al.  Hp spaces of several variables , 1972 .

[24]  H. Amann,et al.  Parabolic problems : the Herbert Amann festschrift , 2011 .

[25]  S. Sritharan,et al.  ON THE ANALYTICITY OF THE SEMIGROUP GENERATED BY THE STOKES OPERATOR WITH NEUMANN-TYPE BOUNDARY CONDITIONS ON LIPSCHITZ SUBDOMAINS OF RIEMANNIAN MANIFOLDS , 2009 .

[26]  Joel H. Ferziger,et al.  Solution of the Navier-Stokes Equations , 2002 .

[27]  S. Dubois What is a solution to the Navier-Stokes equations? , 2002 .

[28]  Michael Taylor Incompressible Fluid Flows on Rough Domains , 2000 .

[29]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[30]  儀我 美一,et al.  Solutions for semilinear parabolic equations in L[p] and regularity of weak solutions of the Navier-Stokes system , 1985 .

[31]  Luciano de Simon Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine , 1964 .