A new proof for Koch and Tataru's result on the well-posedness of Navier-Stokes equations in $BMO^{-1}$
暂无分享,去创建一个
[1] Wei Liu,et al. Local and global well-posedness of SPDE with generalized coercivity conditions☆ , 2012, 1202.0019.
[2] P. Auscher,et al. Singular integral operators on tent spaces , 2011, 1112.4292.
[3] P. Auscher,et al. Conical stochastic maximal $L^p$-regularity for $1 \leq p \lt \infty$ , 2011, 1112.3196.
[4] P. Auscher,et al. The maximal regularity operator on tent spaces , 2010, 1011.1748.
[5] T. Yoneda,et al. Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near BMO−1 , 2010 .
[6] S. Mayboroda,et al. Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces , 2010, 1002.0792.
[7] P. Auscher,et al. Remarks on Maximal Regularity , 2009, 0912.4482.
[8] M. Mitrea,et al. The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains , 2009, Differential and Integral Equations.
[9] H. Koch,et al. Geometric flows with rough initial data , 2009, 0902.1488.
[10] J. Bourgain,et al. Ill-posedness of the Navier-Stokes equations in a critical space in 3D , 2008, 0807.0882.
[11] H. Bahouri,et al. The Heat Kernel and Frequency Localized Functions on the Heisenberg Group , 2008, 0804.0340.
[12] Bernhard H. Haak,et al. On Kato’s Method for Navier–Stokes Equations , 2007, 0709.2067.
[13] J. Neerven,et al. Conical square function estimates in UMD Banach spaces and applications to H∞-functional calculi , 2007, 0709.1350.
[14] S. Mayboroda,et al. Hardy and BMO spaces associated to divergence form elliptic operators , 2006, math/0611804.
[15] P. Auscher,et al. Hardy Spaces of Differential Forms on Riemannian Manifolds , 2006, math/0611334.
[16] Pierre Gilles Lemarié-Rieusset,et al. Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique , 2005 .
[17] Pierre Gilles Lemarié-Rieusset,et al. Recent Developments in the Navier-Stokes Problem , 2002 .
[18] Marius Mitrea,et al. Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .
[19] Pierre Gilles Lemarié-Rieusset,et al. Unicité dans L3(R3) et d'autres espaces fonctionnels limites pour Navier-Stokes. , 2000 .
[20] P. Tchamitchian,et al. Espaces critiques pour le syst eme des equations de Navier-Stokes incompressibles , 1999, 0812.1158.
[21] Yoshikazu Giga,et al. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .
[22] Y. Meyer,et al. Some New Function Spaces and Their Applications to Harmonic Analysis , 1985 .
[23] E. Stein,et al. Hp spaces of several variables , 1972 .
[24] H. Amann,et al. Parabolic problems : the Herbert Amann festschrift , 2011 .
[25] S. Sritharan,et al. ON THE ANALYTICITY OF THE SEMIGROUP GENERATED BY THE STOKES OPERATOR WITH NEUMANN-TYPE BOUNDARY CONDITIONS ON LIPSCHITZ SUBDOMAINS OF RIEMANNIAN MANIFOLDS , 2009 .
[26] Joel H. Ferziger,et al. Solution of the Navier-Stokes Equations , 2002 .
[27] S. Dubois. What is a solution to the Navier-Stokes equations? , 2002 .
[28] Michael Taylor. Incompressible Fluid Flows on Rough Domains , 2000 .
[29] Herbert Koch,et al. Well-posedness for the Navier–Stokes Equations , 2001 .
[30] 儀我 美一,et al. Solutions for semilinear parabolic equations in L[p] and regularity of weak solutions of the Navier-Stokes system , 1985 .
[31] Luciano de Simon. Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine , 1964 .