Efficient Monte Carlo methods for convex risk measures in portfolio credit risk models

We discuss efficient Monte Carlo (MC) methods for the estimation of convex risk measures within the portfolio credit risk model CreditMetrics. Our focus lies on the Utility- based Shortfall Risk (SR) measures, as these avoid several deficiencies of the current industry standard value-at-risk (VaR). It is demonstrated that the importance sampling method exponential twisting provides computationally efficient SR estimators. Numerical simulations of test portfolios illustrate the good performance of the proposed algorithms.

[1]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[2]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[3]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[4]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[5]  Thorsten Schmidt,et al.  Measuring the Risk of Extreme Events , 2005 .

[6]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[7]  D. Tasche,et al.  Expected shortfall and beyond , 2002, cond-mat/0203558.

[8]  P. Glasserman,et al.  Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options , 1999 .

[9]  Dirk Tasche,et al.  Calculating Value-at-Risk contributions in CreditRisk+ , 2002 .

[10]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[11]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[12]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[13]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[14]  P. Glasserman,et al.  Importance sampling for a mixed Poisson model of portfolio credit risk , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[15]  R. Bhar,et al.  Advances in finance and stochastics : essays in honour of Dieter Sondermann , 2002 .

[16]  Paul Glasserman,et al.  Efficient Monte Carlo methods for value-at-risk , 2001 .

[17]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[18]  Paul Glasserman,et al.  1 Importance Sampling and Stratification for Value-at-Risk , 1999 .

[19]  P. Glasserman,et al.  Variance Reduction Techniques for Estimating Value-at-Risk , 2000 .

[20]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[21]  P. Embrechts,et al.  Correlation and Dependency in Risk Management , 2002 .

[22]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[23]  D. Heath,et al.  Pareto Equilibria with coherent measures of risk , 2004 .

[24]  Philippe Jorion Value at Risk , 2001 .

[25]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..

[26]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .