Reduced MEK inhibition preserves genomic stability in naïve human ES cells

[1]  K. Hochedlinger,et al.  Reduced MEK inhibition preserves genomic stability in naïve human ES cells , 2018, Protocol Exchange.

[2]  R. Lister,et al.  Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming , 2017, Nature Methods.

[3]  E. Mizutani,et al.  Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation , 2017, Nature.

[4]  Andrej J. Savol,et al.  Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells , 2017, Nature.

[5]  Paul Bertone,et al.  Epigenetic resetting of human pluripotency , 2017, Development.

[6]  S. Petropoulos,et al.  Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States , 2017, Cell stem cell.

[7]  R. Jaenisch,et al.  Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation. , 2017, Cell stem cell.

[8]  M. Pellegrini,et al.  Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation. , 2017, Cell reports.

[9]  R. Jaenisch,et al.  Molecular Criteria for Defining the Naive Human Pluripotent State , 2016, Cell stem cell.

[10]  Rickard Sandberg,et al.  Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos , 2016, Cell.

[11]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[12]  Deanne M. Taylor,et al.  Next Generation Sequencing-Based Comprehensive Chromosome Screening in Mouse Polar Bodies, Oocytes, and Embryos1 , 2016, Biology of reproduction.

[13]  J. Nichols,et al.  Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass , 2016, Stem cell reports.

[14]  William A. Pastor,et al.  Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory. , 2016, Cell stem cell.

[15]  J. Hanna,et al.  Dynamic stem cell states: naive to primed pluripotency in rodents and humans , 2016, Nature Reviews Molecular Cell Biology.

[16]  D. Trono,et al.  The developmental control of transposable elements and the evolution of higher species. , 2015, Annual review of cell and developmental biology.

[17]  J. Rinn,et al.  A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs , 2015, Nature Biotechnology.

[18]  Lingyi Chen,et al.  Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells , 2015, Proceedings of the National Academy of Sciences.

[19]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[20]  M. Azim Surani,et al.  SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate , 2015, Cell.

[21]  S. Gygi,et al.  Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer , 2014, Analytical chemistry.

[22]  G. Fan,et al.  The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. , 2014, Cell stem cell.

[23]  R. Young,et al.  Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency , 2014, Cell stem cell.

[24]  J. Nichols,et al.  Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human , 2014, Cell.

[25]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[26]  Aviv Regev,et al.  DNA methylation dynamics of the human preimplantation embryo , 2014, Nature.

[27]  W. Reik,et al.  Reprogramming the Methylome: Erasing Memory and Creating Diversity , 2014, Cell stem cell.

[28]  Daniel J. Gaffney,et al.  Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells , 2014, PLoS genetics.

[29]  I. Amit,et al.  Derivation of novel human ground state naive pluripotent stem cells , 2013, Nature.

[30]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[31]  Edward L. Huttlin,et al.  Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. , 2012, Analytical chemistry.

[32]  J. Nichols,et al.  Pluripotency in the embryo and in culture. , 2012, Cold Spring Harbor perspectives in biology.

[33]  H. Ohta,et al.  Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells , 2011, Cell.

[34]  A. Murrell,et al.  Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue , 2011, Epigenetics & Chromatin.

[35]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[36]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[37]  Wei Li,et al.  BSMAP: whole genome bisulfite sequence MAPping program , 2009, BMC Bioinformatics.

[38]  Linda J. Kuo,et al.  γ-H2AX - A Novel Biomarker for DNA Double-strand Breaks , 2008 .

[39]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[40]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..