A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells

[1]  R. Korhonen,et al.  Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity. , 2016, Journal of biomechanics.

[2]  Yuantong Gu,et al.  A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte , 2016, Computer methods in biomechanics and biomedical engineering.

[3]  Yuantong Gu,et al.  Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates. , 2015, Journal of the mechanical behavior of biomedical materials.

[4]  R. Korhonen,et al.  How Does The Actin Cytoskeleton Modulate The Local Elastic And Time-dependent Properties Of Chondrocytes During AFM Nanoindentation? , 2015 .

[5]  W. Senadeera,et al.  ANALYSIS OF STRAIN-RATE DEPENDENT MECHANICAL BEHAVIOR OF SINGLE CHONDROCYTE: A FINITE ELEMENT STUDY , 2014 .

[6]  Yuantong Gu,et al.  Determination of strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes using atomic force microscopy and inverse finite element analysis. , 2014, Journal of biomechanical engineering.

[7]  YuanTong Gu,et al.  Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes , 2014 .

[8]  R. H. Fillingame,et al.  to the cytoplasm , 2014 .

[9]  H. Gong,et al.  The effect of the endothelial cell cortex on atomic force microscopy measurements. , 2013, Biophysical journal.

[10]  G. Loots,et al.  Effect of Age and Cytoskeletal Elements on the Indentation-Dependent Mechanical Properties of Chondrocytes , 2013, PloS one.

[11]  J. McGarry,et al.  Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. , 2013, Acta biomaterialia.

[12]  Walter Herzog,et al.  Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis , 2013, Comput. Math. Methods Medicine.

[13]  G. Charras,et al.  The cytoplasm of living cells behaves as a poroelastic material , 2013, Nature materials.

[14]  Amirhossein Jafari Bidhendi,et al.  A Finite Element Study of Micropipette Aspiration of Single Cells: Effect of Compressibility , 2012, Comput. Math. Methods Medicine.

[15]  D. Hu Fields, Forces, and Flows in Biological Systems. , 2012 .

[16]  Yang Li,et al.  Poroelasticity of cartilage at the nanoscale. , 2011, Biophysical journal.

[17]  G. Charras,et al.  Experimental validation of atomic force microscopy-based cell elasticity measurements , 2011, Nanotechnology.

[18]  M. Papini,et al.  A nonlinear biphasic fiber-reinforced porohyperviscoelastic model of articular cartilage incorporating fiber reorientation and dispersion. , 2011, Journal of biomechanical engineering.

[19]  Jianping Fu,et al.  Cell shape and substrate rigidity both regulate cell stiffness. , 2011, Biophysical journal.

[20]  M. Lekka,et al.  Depth-sensing analysis of cytoskeleton organization based on AFM data , 2011, European Biophysics Journal.

[21]  Zhibing Zhang,et al.  Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling , 2010, Journal of The Royal Society Interface.

[22]  Walter Herzog,et al.  Osmotic loading of in situ chondrocytes in their native environment. , 2010, Molecular & cellular biomechanics : MCB.

[23]  K. Ritchie,et al.  Neuronal elasticity as measured by atomic force microscopy , 2010, Journal of Neuroscience Methods.

[24]  Farshid Guilak,et al.  Mechanical Properties and Gene Expression of Chondrocytes on Micropatterned Substrates Following Dedifferentiation in Monolayer , 2009, Cellular and molecular bioengineering.

[25]  D. D’Lima,et al.  Aging-related differences in chondrocyte viscoelastic properties. , 2009, Molecular & cellular biomechanics : MCB.

[26]  Kyriacos A Athanasiou,et al.  In situ mechanical properties of the chondrocyte cytoplasm and nucleus. , 2009, Journal of biomechanics.

[27]  Michelle L. Oyen,et al.  Viscoelastic and poroelastic mechanical characterization of hydrated gels , 2009 .

[28]  Jack L. Lewis,et al.  Poroviscoelastic cartilage properties in the mouse from indentation. , 2009, Journal of biomechanical engineering.

[29]  G. Ateshian,et al.  Dependence of Zonal Chondrocyte Water Transport Properties on Osmotic Environment , 2008, Cellular and molecular bioengineering.

[30]  Hermann Schillers,et al.  Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing , 2008, Pflügers Archiv - European Journal of Physiology.

[31]  Farshid Guilak,et al.  Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. , 2008, Journal of biomechanics.

[32]  P. Janmey,et al.  Cell mechanics: integrating cell responses to mechanical stimuli. , 2007, Annual review of biomedical engineering.

[33]  Farshid Guilak,et al.  A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? , 2007, Biophysical journal.

[34]  G A Ateshian,et al.  A Theoretical Analysis of Water Transport Through Chondrocytes , 2007, Biomechanics and modeling in mechanobiology.

[35]  A. Grodzinsky,et al.  Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. , 2007, Journal of biomechanics.

[36]  G M Artmann,et al.  Body temperature-related structural transitions of monotremal and human hemoglobin. , 2006, Biophysical journal.

[37]  Anthony G. Evans,et al.  A bio-chemo-mechanical model for cell contractility , 2006, Proceedings of the National Academy of Sciences.

[38]  F. Guilak,et al.  Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. , 2006, Osteoarthritis and cartilage.

[39]  W Herzog,et al.  Arthroscopic evaluation of cartilage degeneration using indentation testing--influence of indenter geometry. , 2006, Clinical biomechanics.

[40]  H. Helminen,et al.  The lack of effect of glucosamine sulphate on aggrecan mRNA expression and (35)S-sulphate incorporation in bovine primary chondrocytes. , 2006, Biochimica et biophysica acta.

[41]  T. Laursen,et al.  Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. , 2006, Journal of biomechanics.

[42]  K. Athanasiou,et al.  Biomechanics of single zonal chondrocytes. , 2006, Journal of biomechanics.

[43]  N. Gavara,et al.  Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Nic D. Leipzig,et al.  Unconfined creep compression of chondrocytes. , 2004, Journal of biomechanics.

[45]  Jens Struckmeier,et al.  Hydrodynamic effects in fast AFM single-molecule force measurements , 2005, European Biophysics Journal.

[46]  Seonghun Park,et al.  Microscale frictional response of bovine articular cartilage from atomic force microscopy. , 2004, Journal of biomechanics.

[47]  Ueli Aebi,et al.  Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. , 2004, Biophysical journal.

[48]  F. Guilak,et al.  The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[49]  Kyriacos A Athanasiou,et al.  Creep indentation of single cells. , 2003, Journal of biomechanical engineering.

[50]  G. Charras,et al.  Determination of cellular strains by combined atomic force microscopy and finite element modeling. , 2002, Biophysical journal.

[51]  H J Helminen,et al.  Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. , 2002, Journal of biomechanics.

[52]  Jan Gimsa,et al.  Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. , 2002, Bioelectrochemistry.

[53]  Ferenc Horkay,et al.  Determination of elastic moduli of thin layers of soft material using the atomic force microscope. , 2002, Biophysical journal.

[54]  K. Costa,et al.  MULTI-SCALE MEASUREMENT OF MECHANICAL PROPERTIES OF SOFT SAMPLES WITH ATOMIC FORCE MICROSCOPY , 2002 .

[55]  J. Suh,et al.  A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. , 2001, Journal of biomechanics.

[56]  F Guilak,et al.  Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[57]  F Guilak,et al.  An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem. , 2000, Journal of biomechanical engineering.

[58]  R. Burgkart,et al.  Viscoelastic properties of the cell nucleus. , 2000, Biochemical and biophysical research communications.

[59]  A. Grodzinsky,et al.  Cartilage tissue remodeling in response to mechanical forces. , 2000, Annual review of biomedical engineering.

[60]  F. Guilak The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. , 2000, Biorheology.

[61]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[62]  K. Athanasiou,et al.  Cytoindentation for obtaining cell biomechanical properties , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[63]  J. Sader,et al.  Calibration of rectangular atomic force microscope cantilevers , 1999 .

[64]  J. Suh,et al.  Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue , 1999 .

[65]  W. R. Jones,et al.  Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. , 1999, Journal of biomechanics.

[66]  I. Kiviranta,et al.  Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage , 1997, Annals of the rheumatic diseases.

[67]  T. Stossel On the crawling of animal cells. , 1993, Science.

[68]  V C Mow,et al.  A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage. , 1992, Journal of biomechanical engineering.

[69]  E. Collings Dynamic Elastic Modulus , 1986 .

[70]  P. Lin,et al.  Effect of heat on the microtubule disassembly and its relationship to body temperatures. , 1981, Biochemical and biophysical research communications.

[71]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[72]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[73]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[74]  Maurice A. Biot,et al.  Consolidation Settlement Under a Rectangular Load Distribution , 1941 .