Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin.

[1]  C. Hackenberger,et al.  More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. , 2014, Current opinion in chemical biology.

[2]  C. Bertozzi,et al.  Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes , 2007, Nature Biotechnology.

[3]  D. Sackett,et al.  Site-specific orthogonal labeling of the carboxy terminus of alpha-tubulin. , 2010, ACS chemical biology.

[4]  M. T. Stubbs,et al.  N‐terminale Proteinmodifizierung mittels Substrat‐aktivierter Katalyse , 2014 .

[5]  Christopher D Spicer,et al.  Selective chemical protein modification , 2014, Nature Communications.

[6]  Thomas Müller-Reichert,et al.  Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments , 2011, Science.

[7]  G. Piszczek,et al.  Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin , 2011, Nature Structural &Molecular Biology.

[8]  Christian P. R. Hackenberger,et al.  Chemoselektive Ligations‐ und Modifikationsstrategien für Peptide und Proteine , 2008 .

[9]  S. Rose-John,et al.  Semisynthesis of biologically active glycoforms of the human cytokine interleukin 6. , 2014, Angewandte Chemie.

[10]  S. Muyldermans,et al.  Naturally occurring antibodies devoid of light chains , 1993, Nature.

[11]  R. Brock,et al.  Stabilization of peptides for intracellular applications by phosphoramidate-linked polyethylene glycol chains. , 2013, Angewandte Chemie.

[12]  C. Weise,et al.  Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. , 2009, Angewandte Chemie.

[13]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[14]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[15]  P. Schultz,et al.  Die Erweiterung des genetischen Codes , 2005 .

[16]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[17]  Christian P. R. Hackenberger,et al.  Chemoselektive Staudinger‐Phosphit‐Reaktion von Aziden für die Phosphorylierung von Proteinen , 2009 .

[18]  K. Weber,et al.  The carboxy-terminal peptide of detyrosinated alpha tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. , 1994, European journal of biochemistry.

[19]  A. Itzen,et al.  Kovalente Proteinmarkierung durch enzymatische Phosphocholinierung , 2015 .

[20]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[21]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[22]  David F. Smith,et al.  Chemistry of natural glycan microarrays. , 2014, Current opinion in chemical biology.

[23]  E. Krause,et al.  Site-specific PEGylation of proteins by a Staudinger-phosphite reaction , 2010 .

[24]  Swati Tyagi,et al.  Click strategies for single-molecule protein fluorescence. , 2012, Journal of the American Chemical Society.

[25]  M. Distefano,et al.  Enzymatic labeling of proteins: techniques and approaches. , 2013, Bioconjugate chemistry.

[26]  F. Boisvert,et al.  Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes , 2008, The Journal of cell biology.

[27]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[28]  P. Schultz,et al.  Expanding the genetic code. , 2002, Chemical communications.

[29]  S. Hart,et al.  Sortase-mediated protein ligation: a new method for protein engineering. , 2004, Journal of the American Chemical Society.

[30]  C. Bertozzi,et al.  Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag , 2009, Proceedings of the National Academy of Sciences.

[31]  R. Jacob,et al.  Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells , 2012, Journal of Cell Science.

[32]  O. Blixt,et al.  Arraying the post-translational glycoproteome (PTG). , 2014, Current opinion in chemical biology.

[33]  Christian P. R. Hackenberger,et al.  Stabilisierung von Peptiden für intrazelluläre Anwendungen mit Phosphoramidat‐verzweigten Polyethylenglycol‐Ketten , 2013 .

[34]  Neil L Kelleher,et al.  Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Corella S. Casas-Delucchi,et al.  Modulation of protein properties in living cells using nanobodies , 2010, Nature Structural &Molecular Biology.

[36]  R. Payne,et al.  Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins. , 2014, Current opinion in chemical biology.

[37]  H. Mootz,et al.  Recent progress in intein research: from mechanism to directed evolution and applications , 2012, Cellular and Molecular Life Sciences.

[38]  D. Schwarzer,et al.  Chemoselective ligation and modification strategies for peptides and proteins. , 2008, Angewandte Chemie.

[39]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[40]  R. Raines,et al.  Chemical synthesis of proteins. , 2005, Annual review of biophysics and biomolecular structure.

[41]  Michael F. Albers,et al.  Covalent Protein Labeling by Enzymatic Phosphocholination. , 2015, Angewandte Chemie.

[42]  Heinrich Leonhardt,et al.  Targeting and tracing antigens in live cells with fluorescent nanobodies , 2006, Nature Methods.

[43]  Andreas Pech,et al.  N-terminal protein modification by substrate-activated reverse proteolysis. , 2014, Angewandte Chemie.

[44]  Hidde L Ploegh,et al.  Sortagging: a versatile method for protein labeling. , 2007, Nature chemical biology.

[45]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[46]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.