A Convex Analytic Approach to Risk-Aware Markov Decision Processes
暂无分享,去创建一个
[1] Jerzy A. Filar,et al. Variance-Penalized Markov Decision Processes , 1989, Math. Oper. Res..
[2] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[3] Onésimo Hernández-Lerma,et al. Constrained Markov control processes in Borel spaces: the discounted case , 2000, Math. Methods Oper. Res..
[4] Darinka Dentcheva,et al. Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..
[5] András Prékopa,et al. ON PROBABILISTIC CONSTRAINED PROGRAMMING , 2015 .
[6] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[7] David M. Kreps. Decision Problems with Expected Utility Critera, I: Upper and Lower Convergent Utility , 1977, Math. Oper. Res..
[8] A. S. Manne. Linear Programming and Sequential Decisions , 1960 .
[9] A. Piunovskiy. Optimal Control of Random Sequences in Problems with Constraints , 1997 .
[10] David M. Kreps. Decision Problems with Expected Utility Criteria, II: Stationarity , 1977, Math. Oper. Res..
[11] O. Hernández-Lerma,et al. Further topics on discrete-time Markov control processes , 1999 .
[12] Lukasz Stettner,et al. Risk-Sensitive Control of Discrete-Time Markov Processes with Infinite Horizon , 1999, SIAM J. Control. Optim..
[13] Marco Frittelli,et al. RISK MEASURES ON P(R) AND VALUE AT RISK WITH PROBABILITY/LOSS FUNCTION , 2012, 1201.2257.
[14] Buheeerdun Yang. Conditional Value-at-Risk Minimization in Finite State Markov Decision Processes : Continuity and Compactness , 2013 .
[15] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[16] V. Borkar. A convex analytic approach to Markov decision processes , 1988 .
[17] Darinka Dentcheva,et al. Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints , 2004, Math. Program..
[18] Cyrus Derman,et al. Finite State Markovian Decision Processes , 1970 .
[19] Onésimo Hernández-Lerma,et al. Approximation Schemes for Infinite Linear Programs , 1998, SIAM J. Optim..
[20] Nicole Bäuerle,et al. More Risk-Sensitive Markov Decision Processes , 2014, Math. Oper. Res..
[21] Özlem Çavus,et al. Computational Methods for Risk-Averse Undiscounted Transient Markov Models , 2014, Oper. Res..
[22] Andrzej Ruszczynski,et al. Risk-averse dynamic programming for Markov decision processes , 2010, Math. Program..
[23] Nicole Bäuerle,et al. Markov Decision Processes with Average-Value-at-Risk criteria , 2011, Math. Methods Oper. Res..
[24] Tanja Neumann. Mean Variance Analysis In Portfolio Choice And Capital Markets , 2016 .
[25] Vivek S. Borkar,et al. Risk-Constrained Markov Decision Processes , 2010, IEEE Trans. Autom. Control..
[26] Onésimo Hernández-Lerma,et al. Constrained Average Cost Markov Control Processes in Borel Spaces , 2003, SIAM J. Control. Optim..
[27] E. Altman. Constrained Markov Decision Processes , 1999 .
[28] William B. Haskell,et al. Stochastic Dominance-Constrained Markov Decision Processes , 2013, SIAM J. Control. Optim..
[29] Vivek S. Borkar,et al. Convex Analytic Methods in Markov Decision Processes , 2002 .
[30] S. Kusuoka. On law invariant coherent risk measures , 2001 .
[31] Darinka Dentcheva,et al. Optimization with multivariate stochastic dominance constraints , 2008, SIAM J. Optim..
[32] Terry J. Lyons,et al. Stochastic finance. an introduction in discrete time , 2004 .
[33] A. Müller,et al. Comparison Methods for Stochastic Models and Risks , 2002 .
[34] W. Fleming. Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .
[35] John S. Edwards,et al. Linear Programming and Finite Markovian Control Problems , 1983 .
[36] Matthew J. Sobel,et al. Mean-Variance Tradeoffs in an Undiscounted MDP , 1994, Oper. Res..
[37] Gautam Appa,et al. Linear Programming in Infinite-Dimensional Spaces , 1989 .
[38] Alexander Shapiro,et al. Optimization of Convex Risk Functions , 2006, Math. Oper. Res..
[39] Søren Johansen. The Extremal Convex Functions. , 1974 .