Gamma-matrices: a new class of simultaneously diagonalizable matrices

In order to precondition Toeplitz systems, we present a new class of simultaneously diagonalizable real matrices, the γ-matrices, which include both symmetric circulant matrices and a subclass of the set of all reverse circulant matrices. We define some algorithms for fast computation of the product between a γ-matrix and a real vector and between two γ-matrices. Moreover, we illustrate a technique of approximating a real symmetric Toeplitz matrix by a γ-matrix, and we show that the eigenvalues of the preconditioned matrix are clustered around zero with the exception of at most a finite number of terms.

[1]  G. Bergland,et al.  A radix-eight fast Fourier transform subroutine for real-valued series , 1969 .

[2]  L. Qi Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition , 2013, 1310.5470.

[3]  S. Serra-Capizzano,et al.  Optimal preconditioning for image deblurring with Anti-Reflective boundary conditions , 2012, 1211.0393.

[4]  Daniele Bertaccini,et al.  The Spectrum of Circulant-Like Preconditioners for Some General Linear Multistep Formulas for Linear Boundary Value Problems , 2002, SIAM J. Numer. Anal..

[5]  A. Bose,et al.  Random Circulant Matrices , 2018 .

[6]  Riccardo Mariani,et al.  A Spectral Technique to Solve the Chromatic Number Problem in Circulant Graphs , 2004, ICCSA.

[7]  R. H. Chan The spectrum of a family of circulant preconditioned Toeplitz systems , 1989 .

[8]  Eunice Carrasquinha,et al.  Image reconstruction based on circulant matrices , 2018, Signal Process. Image Commun..

[9]  David P. Williamson,et al.  Characterizing the Integrality Gap of the Subtour LP for the Circulant Traveling Salesman Problem , 2019, SIAM J. Discret. Math..

[10]  Ivan Gerace,et al.  Half-Quadratic Image Restoration with a Non-parallelism Constraint , 2017, Journal of Mathematical Imaging and Vision.

[11]  Fabio Scarabotti The Discrete Sine Transform and the Spectrum of the Finite q-ary Tree , 2005, SIAM J. Discret. Math..

[12]  S. Serra-Capizzano,et al.  A note on the eigenvalues of g-circulants ( and of g-Toeplitz , g-Hankel matrices ) , 2013 .

[13]  Federico Greco,et al.  The Travelling Salesman Problem in symmetric circulant matrices with two stripes , 2008, Math. Struct. Comput. Sci..

[14]  Ivan Gerace,et al.  Convex Approximation Technique for Interacting Line Elements Deblurring: a New Approach , 2011, Journal of Mathematical Imaging and Vision.

[15]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[16]  Lothar Reichel,et al.  Circulant preconditioners for discrete ill-posed Toeplitz systems , 2016, Numerical Algorithms.

[17]  T. Huckle,et al.  Using ?-Circulant Matrices for the Preconditioning of Toeplitz Systems , 2003 .

[18]  Sebastiano Vigna,et al.  Hardness Results and Spectral Techniques for Combinatorial Problems on Circulant Graphs , 1998 .

[19]  Federico Greco,et al.  The Traveling Salesman Problem in Circulant Weighted Graphs With Two Stripes , 2007, LMCS.

[20]  A. E. Gilmour Circulant matrix methods for the numerical solution of partial differential equations by FFT convolutions , 1988 .

[21]  Ting-Zhu Huang,et al.  A modified T. Chan's preconditioner for Toeplitz systems , 2009, Comput. Math. Appl..

[22]  Xian-Ming Gu,et al.  On the symmetric doubly stochastic inverse eigenvalue problem , 2014 .

[23]  A. Gupta,et al.  A fast recursive algorithm for the discrete sine transform , 1990, IEEE Trans. Acoust. Speech Signal Process..

[24]  Sabine Van Huffel,et al.  Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..

[25]  Yimin Wei,et al.  Fast Hankel Tensor-Vector Products and Application to Exponential Data Fitting , 2014, 1401.6238.

[26]  Utilization of Circulant Matrix Theory in Periodic Autonomous Difference Equations , 2014 .

[27]  István Györi,et al.  Existence of periodic solutions in a linear higher order system of difference equations , 2013, Comput. Math. Appl..

[28]  Georg Heinig,et al.  Hartley Transform Representations of Symmetric Toeplitz Matrix Inverses with Application to Fast Matrix-Vector Multiplication , 2000, SIAM J. Matrix Anal. Appl..

[29]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[30]  Michael K. Ng,et al.  Block {ω}-circulant preconditioners¶for the systems of differential equations , 2003 .

[31]  Raymond H. Chan,et al.  The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .

[32]  Roland Badeau,et al.  Fast Multilinear Singular Value Decomposition for Structured Tensors , 2008, SIAM J. Matrix Anal. Appl..

[33]  Manfred Tasche,et al.  Fast and numerically stable algorithms for discrete Hartley transforms and applications to preconditioning , 2005, Commun. Inf. Syst..

[34]  E. Tyrtyshnikov,et al.  A unifying approach to the construction of circulant preconditioners , 2006 .

[35]  Martin Vetterli,et al.  Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data , 1987, IEEE Trans. Acoust. Speech Signal Process..

[36]  Okan K. Ersoy,et al.  Real discrete Fourier transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[37]  Paolo Zellini,et al.  Matrix algebras in optimal preconditioning , 2001 .

[38]  Jean-Bernard Martens,et al.  Discrete Fourier transform algorithms for real valued sequences , 1984 .

[39]  Carmine Di Fiore,et al.  On a set of matrix algebras related to discrete Hartley-type transforms , 2003 .

[40]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[41]  Dario Bini,et al.  A new preconditioner for the parallel solution of positive definite Toeplitz systems , 1990, SPAA '90.

[42]  Stefano Serra Capizzano,et al.  Antireflective Boundary Conditions for Deblurring Problems , 2010, J. Electr. Comput. Eng..

[43]  Ivan Gerace,et al.  A Preconditioned Finite Element Method for the p-Laplacian Parabolic Equation , 2004 .

[44]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[45]  Hideo Murakami Real-valued fast discrete Fourier transform and cyclic convolution algorithms of highly composite even length , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[46]  G. Tee Eigenvectors of block circulant and alternating circulant matrices , 2005 .

[47]  Paola Favati,et al.  On a matrix algebra related to the discrete Hartley transform , 1993 .