暂无分享,去创建一个
[1] G. Bergland,et al. A radix-eight fast Fourier transform subroutine for real-valued series , 1969 .
[2] L. Qi. Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition , 2013, 1310.5470.
[3] S. Serra-Capizzano,et al. Optimal preconditioning for image deblurring with Anti-Reflective boundary conditions , 2012, 1211.0393.
[4] Daniele Bertaccini,et al. The Spectrum of Circulant-Like Preconditioners for Some General Linear Multistep Formulas for Linear Boundary Value Problems , 2002, SIAM J. Numer. Anal..
[5] A. Bose,et al. Random Circulant Matrices , 2018 .
[6] Riccardo Mariani,et al. A Spectral Technique to Solve the Chromatic Number Problem in Circulant Graphs , 2004, ICCSA.
[7] R. H. Chan. The spectrum of a family of circulant preconditioned Toeplitz systems , 1989 .
[8] Eunice Carrasquinha,et al. Image reconstruction based on circulant matrices , 2018, Signal Process. Image Commun..
[9] David P. Williamson,et al. Characterizing the Integrality Gap of the Subtour LP for the Circulant Traveling Salesman Problem , 2019, SIAM J. Discret. Math..
[10] Ivan Gerace,et al. Half-Quadratic Image Restoration with a Non-parallelism Constraint , 2017, Journal of Mathematical Imaging and Vision.
[11] Fabio Scarabotti. The Discrete Sine Transform and the Spectrum of the Finite q-ary Tree , 2005, SIAM J. Discret. Math..
[12] S. Serra-Capizzano,et al. A note on the eigenvalues of g-circulants ( and of g-Toeplitz , g-Hankel matrices ) , 2013 .
[13] Federico Greco,et al. The Travelling Salesman Problem in symmetric circulant matrices with two stripes , 2008, Math. Struct. Comput. Sci..
[14] Ivan Gerace,et al. Convex Approximation Technique for Interacting Line Elements Deblurring: a New Approach , 2011, Journal of Mathematical Imaging and Vision.
[15] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[16] Lothar Reichel,et al. Circulant preconditioners for discrete ill-posed Toeplitz systems , 2016, Numerical Algorithms.
[17] T. Huckle,et al. Using ?-Circulant Matrices for the Preconditioning of Toeplitz Systems , 2003 .
[18] Sebastiano Vigna,et al. Hardness Results and Spectral Techniques for Combinatorial Problems on Circulant Graphs , 1998 .
[19] Federico Greco,et al. The Traveling Salesman Problem in Circulant Weighted Graphs With Two Stripes , 2007, LMCS.
[20] A. E. Gilmour. Circulant matrix methods for the numerical solution of partial differential equations by FFT convolutions , 1988 .
[21] Ting-Zhu Huang,et al. A modified T. Chan's preconditioner for Toeplitz systems , 2009, Comput. Math. Appl..
[22] Xian-Ming Gu,et al. On the symmetric doubly stochastic inverse eigenvalue problem , 2014 .
[23] A. Gupta,et al. A fast recursive algorithm for the discrete sine transform , 1990, IEEE Trans. Acoust. Speech Signal Process..
[24] Sabine Van Huffel,et al. Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..
[25] Yimin Wei,et al. Fast Hankel Tensor-Vector Products and Application to Exponential Data Fitting , 2014, 1401.6238.
[26] Utilization of Circulant Matrix Theory in Periodic Autonomous Difference Equations , 2014 .
[27] István Györi,et al. Existence of periodic solutions in a linear higher order system of difference equations , 2013, Comput. Math. Appl..
[28] Georg Heinig,et al. Hartley Transform Representations of Symmetric Toeplitz Matrix Inverses with Application to Fast Matrix-Vector Multiplication , 2000, SIAM J. Matrix Anal. Appl..
[29] G. Strang,et al. Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .
[30] Michael K. Ng,et al. Block {ω}-circulant preconditioners¶for the systems of differential equations , 2003 .
[31] Raymond H. Chan,et al. The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .
[32] Roland Badeau,et al. Fast Multilinear Singular Value Decomposition for Structured Tensors , 2008, SIAM J. Matrix Anal. Appl..
[33] Manfred Tasche,et al. Fast and numerically stable algorithms for discrete Hartley transforms and applications to preconditioning , 2005, Commun. Inf. Syst..
[34] E. Tyrtyshnikov,et al. A unifying approach to the construction of circulant preconditioners , 2006 .
[35] Martin Vetterli,et al. Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data , 1987, IEEE Trans. Acoust. Speech Signal Process..
[36] Okan K. Ersoy,et al. Real discrete Fourier transform , 1985, IEEE Trans. Acoust. Speech Signal Process..
[37] Paolo Zellini,et al. Matrix algebras in optimal preconditioning , 2001 .
[38] Jean-Bernard Martens,et al. Discrete Fourier transform algorithms for real valued sequences , 1984 .
[39] Carmine Di Fiore,et al. On a set of matrix algebras related to discrete Hartley-type transforms , 2003 .
[40] Jianqin Zhou,et al. On discrete cosine transform , 2011, ArXiv.
[41] Dario Bini,et al. A new preconditioner for the parallel solution of positive definite Toeplitz systems , 1990, SPAA '90.
[42] Stefano Serra Capizzano,et al. Antireflective Boundary Conditions for Deblurring Problems , 2010, J. Electr. Comput. Eng..
[43] Ivan Gerace,et al. A Preconditioned Finite Element Method for the p-Laplacian Parabolic Equation , 2004 .
[44] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[45] Hideo Murakami. Real-valued fast discrete Fourier transform and cyclic convolution algorithms of highly composite even length , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.
[46] G. Tee. Eigenvectors of block circulant and alternating circulant matrices , 2005 .
[47] Paola Favati,et al. On a matrix algebra related to the discrete Hartley transform , 1993 .