On Primal-Dual Circle Representations

The Koebe-Andreev-Thurston Circle Packing Theorem states that every triangulated planar graph has a circle-contact representation. The theorem has been generalized in various ways. The arguably most prominent generalization assures the existence of a primal-dual circle representation for every 3-connected planar graph. The aim of this note is to give a streamlined proof of this result.

[1]  János Pach,et al.  Combinatorial Geometry , 2012 .

[2]  James W. Cannon,et al.  Introduction to circle packing: the theory of discrete analytic functions , 2007 .

[3]  Sariel Har-Peled,et al.  A Simple Proof of the Existence of a Planar Separator , 2011, ArXiv.

[4]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[5]  Francisco Santos,et al.  Pseudo-Triangulations - a Survey , 2006 .

[6]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[7]  David Eppstein,et al.  Diamond-Kite Meshes: Adaptive Quadrilateral Meshing and Orthogonal Circle Packing , 2012, IMR.

[8]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[9]  Gerhard Ringel,et al.  Colorings of Circles , 1984 .

[10]  Oded Schramm How to cage an egg , 1992 .

[11]  Patrice Ossona de Mendez,et al.  On Triangle Contact Graphs , 1994, Combinatorics, Probability and Computing.

[12]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[13]  David Eppstein,et al.  A Möbius-Invariant Power Diagram and Its Applications to Soap Bubbles and Planar Lombardi Drawing , 2014, Discrete & Computational Geometry.

[14]  Stefan Felsner,et al.  Strongly Monotone Drawings of Planar Graphs , 2016, Symposium on Computational Geometry.

[15]  Günter Rote,et al.  Non-Crossing Frameworks with Non-Crossing Reciprocals , 2004, Discret. Comput. Geom..

[16]  O. Schramm Square tilings with prescribed combinatorics , 1993 .

[17]  Bojan Mohar,et al.  Circle packings of maps —The Euclidean case , 1997 .

[18]  Oded Schramm,et al.  Combinatorically Prescribed Packings and Applications to Conformal and Quasiconformal Maps , 2007, 0709.0710.

[19]  TengShang-Hua,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997 .

[20]  Giuseppe Di Battista,et al.  Angles of planar triangular graphs , 1993, STOC '93.

[21]  W. T. Tutte How to Draw a Graph , 1963 .

[22]  Y. C. Verdière,et al.  Empilements de cercles: Convergence d’une méthode de point fixe , 1989 .

[23]  Benjamin Lévêque,et al.  Triangle Contact Representations and Duality , 2010, Discrete & Computational Geometry.

[24]  Stefan Felsner,et al.  Rectangle and Square Representations of Planar Graphs , 2013 .

[25]  Kenneth Stephenson Circle Packing : A Mathematical Tale , 2003 .

[26]  Bojan Mohar,et al.  Circle Packings of Maps in Polynomial Time , 1997, Eur. J. Comb..

[27]  Giuseppe Liotta,et al.  Checking the convexity of polytopes and the planarity of subdivisions , 1998, Comput. Geom..

[28]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[29]  Stefan Felsner,et al.  Pentagon Contact Representations , 2017, Electron. Notes Discret. Math..

[30]  Graham R. Brightwell,et al.  Representations of Planar Graphs , 1993, SIAM J. Discret. Math..