The Constitutive Relation Error method : a general verification tool

This chapter reviews the Constitutive Relation Error method as a general verification tool which is very suitable to compute strict and effective error bounds for linear and more generally convex Structural Mechanics problems. The review is focused on the basic features of the method and the most recent developments.

[1]  Pierre Ladevèze,et al.  Bounds on history‐dependent or independent local quantities in viscoelasticity problems solved by approximate methods , 2007 .

[2]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[3]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[4]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[5]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[6]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[7]  R. D. Mindlin Force at a Point in the Interior of a Semi-Infinite Solid , 1936 .

[8]  L. Gallimard,et al.  Error estimation of stress intensity factors for mixed‐mode cracks , 2006 .

[9]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[10]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[11]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[12]  Green's functions for the biharmonic equation: bonded elastic media , 1987 .

[13]  Antonio Huerta,et al.  The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .

[14]  T. Strouboulis,et al.  A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor , 2000 .

[15]  Eric Florentin,et al.  Evaluation of the local quality of stresses in 3D finite element analysis , 2002 .

[16]  Pierre Ladevèze,et al.  Calculation of strict error bounds for finite element approximations of non‐linear pointwise quantities of interest , 2010 .

[17]  E. A. W. Maunder,et al.  Recovery of equilibrium on star patches using a partition of unity technique , 2009 .

[18]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[19]  Ludovic Chamoin,et al.  New bounding techniques for goal‐oriented error estimation applied to linear problems , 2013, 1704.06688.

[20]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[21]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[22]  Pierre Ladevèze,et al.  Proper Generalized Decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimization , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[23]  Pierre Ladevèze,et al.  Verification of stochastic models in uncertain environments using the constitutive relation error method , 2006 .

[24]  Pierre Ladevèze,et al.  A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .

[25]  I. Babuska,et al.  A numerical method with a posteriori error estimation for determining the path taken by a propagating crack , 1998 .

[26]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[27]  Nicolas Moës,et al.  A new a posteriori error estimation for nonlinear time-dependent finite element analysis , 1998 .

[28]  Ludovic Chamoin,et al.  On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.

[29]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[30]  A Posteriori Error Control and Mesh Adaptation for FE models in Elasticity and Elasto-Plasticity , 1998 .

[31]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[32]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[33]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .

[34]  Pierre Ladevèze,et al.  Robust control of PGD-based numerical simulations , 2012 .

[35]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[36]  Vincent Visseq,et al.  Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems , 2012 .

[37]  Pierre Ladevèze,et al.  An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses , 2011, Computational Mechanics.

[38]  Philippe Marin,et al.  Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .

[39]  Ludovic Chamoin,et al.  Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems , 2012 .

[40]  Pierre Ladevèze,et al.  On the verification of model reduction methods based on the proper generalized decomposition , 2011 .

[41]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[42]  Pierre Ladevèze,et al.  Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems , 2006 .

[43]  H. J. Greenberg The Determination of Upper and Lower Bounds for the Solution of the Dirichlet Problem , 1948 .

[44]  Pierre Ladevèze,et al.  Local error estimators for finite element linear analysis , 1999 .

[45]  P. Ladevèze,et al.  Strict upper bounds of the error in calculated outputs of interest for plasticity problems , 2012 .

[46]  Pedro Díez,et al.  An error estimator for separated representations of highly multidimensional models , 2010 .

[47]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[48]  P. Ladevèze,et al.  Model verification in dynamics through strict upper error bounds , 2009 .

[49]  K. Washizu,et al.  Bounds for Solutions of Boundary Value Problems in Elasticity , 1953 .

[50]  Pierre Ladevèze,et al.  Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .

[51]  Pierre Ladevèze,et al.  A new non-intrusive technique for the construction of admissible stress fields in model verification , 2010 .

[52]  Pierre Ladevèze,et al.  Strict bounds for computed stress intensity factors , 2009 .

[53]  M. Dahan,et al.  Solutions fondamentales pour un milieu élastique à isotropie transverse , 1980 .