Improvement of the Photoelectrochemical Performance of TiO2 Nanorod Array by PEDOT and Oxygen Vacancy Co-Modification

In this study, oxygen vacancy modified TiO2 nanorod array photoelectrode was prepared by reducing hydrogen atmosphere to increase its free charge carrier density. Subsequently, a p-type conductive poly 3,4-ethylenedioxythiophene (PEDOT) layer was deposited on the surface of oxygen vacancy modified TiO2, to inhibit the surface states. Meanwhile, a p-n heterojunction formed between PEDOT and TiO2 to improve the separation of photo-induced carriers further. The photocurrent of TiO2 nanorod array increased to nearly 0.9 mA/cm2 after the co-modification under standard sunlight illumination, whose value is nearly nine times higher than that of pure TiO2 nanorod array. Thus, this is a promising modification method for TiO2 photoanode photoelectrochemical (PEC) performance improving.

[1]  S. Jana,et al.  Fabrication of Hierarchical V2O5 Nanorods on TiO2 Nanofibers and Their Enhanced Photocatalytic Activity under Visible Light , 2018, ChemCatChem.

[2]  Yuyu Bu,et al.  Photogenerated-carrier separation along edge dislocation of WO3 single-crystal nanoflower photoanode , 2018 .

[3]  Yuyu Bu,et al.  Sulfur- and Carbon-Codoped Carbon Nitride for Photocatalytic Hydrogen Evolution Performance Improvement , 2018 .

[4]  Linjun Wang,et al.  Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System , 2017, Advanced materials.

[5]  Yuyu Bu,et al.  Optimization of the Photo‐Electrochemical Performance of Mo‐Doped BiVO4 Photoanode by Controlling the Metal–Oxygen Bond State on (020) Facet , 2017 .

[6]  E. Fortunato,et al.  Photocatalytic TiO2 Nanorod Spheres and Arrays Compatible with Flexible Applications , 2017 .

[7]  A. J. Parola,et al.  PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices , 2017 .

[8]  S. Jana,et al.  Mesoporous Titanium Dioxide Nanofibers with a Significantly Enhanced Photocatalytic Activity , 2016 .

[9]  K. Leo,et al.  PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics , 2016 .

[10]  C. Xie,et al.  A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity , 2016 .

[11]  Li Wang,et al.  Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. , 2015, Journal of the American Chemical Society.

[12]  B. Pan,et al.  Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. , 2014, Journal of the American Chemical Society.

[13]  Ruiqin Q. Zhang,et al.  Carbon dot loading and TiO₂ nanorod length dependence of photoelectrochemical properties in carbon dot/TiO₂ nanorod array nanocomposites. , 2014, ACS applied materials & interfaces.

[14]  N. Dasgupta,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[15]  Ying Dai,et al.  Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. , 2012, ACS applied materials & interfaces.

[16]  Yiseul Park,et al.  Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet , 2012 .

[17]  B. Yi,et al.  A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation , 2011 .

[18]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[19]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[20]  R. Penner,et al.  Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. , 2011, Nano letters.

[21]  S. Luo,et al.  High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. , 2010, Environmental science & technology.

[22]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[23]  Yadong Li,et al.  Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. , 2009, Journal of the American Chemical Society.

[24]  Wilson A. Smith,et al.  Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. , 2009, Small.

[25]  T. Sasaki,et al.  Layer-by-Layer Assembled TiO2 Nanoparticle/PEDOT-PSS Composite Films for Switching of Electric Conductivity in Response to Ultraviolet and Visible Light , 2006 .

[26]  R. Sonawane,et al.  Preparation and photo-catalytic activity of FeTiO2 thin films prepared by sol–gel dip coating , 2004 .

[27]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.