Potentials in Rat Dorsal Cochlear Nucleus Pyramidal Transients Evoked by Action

[1]  J Mertz,et al.  Odor-evoked calcium signals in dendrites of rat mitral cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Nathaniel N. Urban,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb , 2001 .

[3]  L. Kovács,et al.  Potassium-depolarization-induced cytoplasmic [Ca2+] transients in freshly dissociated pyramidal neurones of the rat dorsal cochlear nucleus , 2000, Pflügers Archiv.

[4]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[5]  H. Voigt,et al.  Acoustic and current-pulse responses of identified neurons in the dorsal cochlear nucleus of unanesthetized, decerebrate gerbils. , 1999, Journal of neurophysiology.

[6]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[7]  J. Magee,et al.  Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. , 1999, Journal of neurophysiology.

[8]  I. Forsythe,et al.  Possible modulatory role of voltage-activated Ca2+ currents determining the membrane properties of isolated pyramidal neurones of the rat dorsal cochlear nucleus , 1999, Brain Research.

[9]  V. Sandler,et al.  Calcium-Induced Calcium Release Contributes to Action Potential-Evoked Calcium Transients in Hippocampal CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[10]  P. Manis,et al.  Voltage-gated Ca2+ conductances in acutely isolated guinea pig dorsal cochlear nucleus neurons. , 1999, Journal of neurophysiology.

[11]  P. Schwindt,et al.  Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. , 1999, Journal of neurophysiology.

[12]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[13]  E Wanke,et al.  Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study. , 1998, Biophysical journal.

[14]  E D Young,et al.  Granule Cell Activation of Complex-Spiking Neurons in Dorsal Cochlear Nucleus , 1997, The Journal of Neuroscience.

[15]  Nace L. Golding,et al.  Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. , 1997, Journal of neurophysiology.

[16]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[17]  P. Adams,et al.  Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. , 1997, Journal of neurophysiology.

[18]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[19]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[20]  M. Bilak,et al.  Differential expression of N-methyl-d-aspartate receptor in the cochlear nucleus of the mouse , 1996, Neuroscience.

[21]  P. Manis,et al.  N-methyl-D-aspartate receptors at parallel fiber synapses in the dorsal cochlear nucleus. , 1996, Journal of neurophysiology.

[22]  D. Oertel,et al.  Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[24]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[25]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[26]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[27]  D O Kim,et al.  Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat. , 1995, Journal of neurophysiology.

[28]  G. Spirou,et al.  Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus , 1994, The Journal of comparative neurology.

[29]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[30]  A. Marty,et al.  Calcium-induced calcium release in cerebellar purkinje cells , 1994, Neuron.

[31]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[32]  S. Zhang,et al.  Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. , 1993, Journal of neurophysiology.

[33]  D. Ryugo,et al.  The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats , 1993, The Journal of comparative neurology.

[34]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[35]  W. N. Ross,et al.  Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation. , 1992, Journal of neurophysiology.

[36]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[37]  F. A. Edwards,et al.  A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system , 1989, Pflügers Archiv.

[38]  R. Tsien,et al.  Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. , 1989, The Journal of biological chemistry.

[39]  R Y Tsien,et al.  Photochemically generated cytosolic calcium pulses and their detection by fluo-3. , 1989, The Journal of biological chemistry.

[40]  J. A. Hirsch,et al.  Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro. , 1988, The Journal of physiology.

[41]  J. A. Hirsch,et al.  Synaptic connections in the dorsal cochlear nucleus of mice, in vitro. , 1988, The Journal of physiology.

[42]  W. N. Ross,et al.  Mapping calcium transients in the dendrites of Purkinje cells from the guinea‐pig cerebellum in vitro. , 1987, The Journal of physiology.

[43]  B. MacVicar Infrared video microscopy to visualize neurons in the in vitro brain slice preparation , 1984, Journal of Neuroscience Methods.

[44]  T. Blackstad,et al.  Pyramidal neurones of the dorsal cochlear nucleus: A golgi and computer reconstruction study in cat , 1984, Neuroscience.

[45]  E. Mugnaini,et al.  Cartwheel neurons of the dorsal cochlear nucleus: A Golgi‐electron microscopic study in rat , 1984, The Journal of comparative neurology.

[46]  W. Brownell,et al.  Synaptic organization of eighth nerve afferents to cat dorsal cochlear nucleus. , 1983, Journal of neurophysiology.

[47]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[48]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E C Kane,et al.  Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study , 1974 .

[50]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[51]  J. Eccles,et al.  The interpretation of spike potentials of motoneurones , 1957, The Journal of physiology.

[52]  E. Ağar,,et al.  Membrane Properties of Complex Spike Firing Neurons of the Mouse Dorsal Cochlear Nucleus In Vitro , 1996, Journal of basic and clinical physiology and pharmacology.

[53]  M. Larkum,et al.  Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. , 1996, Journal of neurophysiology.

[54]  R Y Tsien,et al.  Calcium channels, stores, and oscillations. , 1990, Annual review of cell biology.

[55]  P. Manis,et al.  Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. , 1989, Journal of neurophysiology.

[56]  Enrico Mugnaini,et al.  Neuronal Circuits in the Dorsal Cochlear Nucleus , 1981 .

[57]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. , 1980, The Journal of physiology.

[58]  P. Fatt,et al.  Sequence of events in synaptic activation of a motoneurone. , 1957, Journal of neurophysiology.