Allocating Vertex π-Guards in Simple Polygons via Pseudo-Triangulations
暂无分享,去创建一个
[1] Michel Pocchiola,et al. Pseudo-triangulations: theory and applications , 1996, SCG '96.
[2] Michel Pocchiola,et al. Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..
[3] Joseph O'Rourke. Vertex pi-lights for monotone mountains , 1997, CCCG.
[4] Csaba D. Tóth. Art gallery problem with guards whose range of vision is 180 , 2000, Comput. Geom..
[5] Jorge Urrutia,et al. Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.
[6] G. Toussaint. Computing geodesic properties inside a simple polygon , 1989 .
[7] V. Chvátal. A combinatorial theorem in plane geometry , 1975 .
[8] Steve Fisk,et al. A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.
[9] D. Souvaine,et al. Experimental Results on Upper Bounds for Vertex Pi-Lights ∗ , 2001 .
[10] Bettina Speckmann,et al. Kinetic Collision Detection for Simple Polygons , 2002, Int. J. Comput. Geom. Appl..
[11] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[12] Jorge Urrutia,et al. Optimal Floodlight Illumination of Orthogonal Art Galleries , 1994, Canadian Conference on Computational Geometry.
[13] Leonidas J. Guibas,et al. Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..
[14] Csaba D. Tóth. Illuminating Polygons with Vertex pi-Floodlights , 2001, International Conference on Computational Science.
[15] Joseph O'Rourke,et al. Open Problems in the Combinatorics of Visibility and Illumination , 1998 .
[16] Jorge Urrutia,et al. Illumination of Polygons with Vertex Lights , 1995, Inf. Process. Lett..
[17] Joseph S. B. Mitchell,et al. Computational Geometry Column 42 , 2001, Int. J. Comput. Geom. Appl..
[18] Leonidas J. Guibas,et al. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.
[19] Bettina Speckmann,et al. Kinetic collision detection for simple polygons , 2000, SCG '00.
[20] John Hershberger,et al. Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.
[21] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[22] Ileana Streinu,et al. A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[23] Leonidas J. Guibas,et al. Ray Shooting in Polygons Using Geodesic Triangulations , 1991, ICALP.
[24] Michael T. Goodrich,et al. Dynamic Ray Shooting and Shortest Paths in Planar Subdivisions via Balanced Geodesic Triangulations , 1997, J. Algorithms.