Herbrand property, finite quasi-Herbrand models, and a Chandra-Merlin theorem for quantified conjunctive queries

A structure enjoys the Herbrand property if, whenever it satisfies an equality between some terms, these terms are unifiable. On such structures the expressive power of equalities becomes trivial, as their semantic satisfiability is reduced to a purely syntactic check.

[1]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[2]  Giuseppe Perelli,et al.  Binding Forms in First-Order Logic , 2015, CSL.

[3]  Erich Grädel,et al.  Decision procedures for guarded logics , 1999 .

[4]  Hubie Chen,et al.  The Complexity of Width Minimization for Existential Positive Queries , 2014, ICDT.

[5]  Stål O. Aanderaa On the Decision Problem for Formulas in which all Disjunctions are Binary , 1971 .

[6]  Michael R. Genesereth,et al.  Introduction to Logic, Second Edition , 2013, Introduction to Logic.

[7]  Paliath Narendran,et al.  Unification Theory , 2001, Handbook of Automated Reasoning.

[8]  Michael J. Maher,et al.  Unification Revisited , 1988, Foundations of Deductive Databases and Logic Programming..

[9]  Aniello Murano,et al.  What Makes Atl* Decidable? A Decidable Fragment of Strategy Logic , 2012, CONCUR.

[10]  Dexter Kozen Communication: Positive First-Order Logic is NP-Complete , 1981, IBM J. Res. Dev..

[11]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[12]  J. R. Büchi Turing-machines and the Entscheidungsproblem , 1962 .

[13]  Alasdair Urquhart,et al.  Decidability and the finite model property , 1981, J. Philos. Log..

[14]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[15]  R. Jeffrey Formal Logic: Its Scope and Limits , 1981 .

[16]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[17]  Barnaby Martin,et al.  Quantified Constraints and Containment Problems , 2008, LICS.

[18]  Balder ten Cate,et al.  Guarded Negation , 2011, ICALP.

[19]  Jurriaan Rot,et al.  Presenting Distributive Laws , 2013, CALCO.

[20]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[21]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[22]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[23]  Harry R. Lewis,et al.  The Complexity of the Satisfiability Problem for Krom Formulas , 1984, Theor. Comput. Sci..

[24]  Hubie Chen,et al.  How Many Variables Are Needed to Express an Existential Positive Query? , 2017, ICDT.

[25]  Aniello Murano,et al.  Reasoning about Strategies: on the Satisfiability Problem , 2016, Log. Methods Comput. Sci..

[26]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[27]  Phokion G. Kolaitis,et al.  On the Decision Problem for Two-Variable First-Order Logic , 1997, Bulletin of Symbolic Logic.

[28]  Alberto Martelli,et al.  An Efficient Unification Algorithm , 1982, TOPL.

[29]  Michaël Thomazo,et al.  On the complexity of entailment in existential conjunctive first-order logic with atomic negation , 2012, Inf. Comput..