Cytoskeleton micromechanics: A continuum-microscopic approach

JENNIFER J. YOUNG: Cytoskeleton Micromechanics: A Continuum-Microscopic Approach (Under the direction of Sorin Mitran) Creating accurate, whole-cell scale models of the cytoskeleton is computationally challenging, due to the material’s highly heterogeneous microstructure. Continuumbased models, homogenization methods, and coarse grained models are common modeling approaches. These methods utilize constant-in-time, average mechanical properties, whereas continuum-microscopic (CM) models utilize a microscopic model to periodically update local mechanical parameters for a macroscopic model. CM methods have been used for heterogeneous media with unchanging microstructures. This research focuses on extending a basic CM algorithm to model heterogeneous media with time-varying microstructures. Microscopic data is saved over time in the form of probability distribution functions. These PDFs are then extrapolated forward in time to predict what the microstructure will look like in the future. Keeping track of the microstructure over time allows for the accurate computation of the local mechanical parameters used in the continuum-level equations. The model was tested on a rectangular domain, representative of a cytoskeleton. Results showed that the elastic parameters computed with this algorithm are similar to those computed with a fully-microscopic simulation. Errors for continuum level variables (such as stress) in the 10% range are deemed an acceptable trade-off for the 50− 75% savings in computational expense offered by this algorithm.

[1]  Dominic Welsh,et al.  Probability: An Introduction , 1986 .

[2]  W Alt,et al.  Cytoplasm dynamics and cell motion: two-phase flow models. , 1999, Mathematical biosciences.

[3]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[4]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[5]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[6]  C. W. Gear,et al.  Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Roger D. Kamm,et al.  Cytoskeletal mechanics : models and measurements , 2006 .

[8]  M. Sheetz,et al.  Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. , 2006, Annual review of biophysics and biomolecular structure.

[9]  Timothy J. Mitchison,et al.  Reassembly of contractile actin cortex in cell blebs , 2006, The Journal of cell biology.

[10]  J. A. Nichol,et al.  Tensile strength and dilatational elasticity of giant sarcolemmal vesicles shed from rabbit muscle. , 1996, The Journal of physiology.

[11]  D. Lauffenburger,et al.  Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution , 1991, The Journal of cell biology.

[12]  Thomas Y. Hou,et al.  Multiscale Modeling and Computation of Incompressible Flow , 2002 .

[13]  C C Cunningham,et al.  Actin polymerization and intracellular solvent flow in cell surface blebbing , 1995, The Journal of cell biology.

[14]  Ioannis G Kevrekidis,et al.  Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. , 2005, The Journal of chemical physics.

[15]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[16]  Jörg Schumacher,et al.  Multiscale modelling strategy using the lattice Boltzmann method for polymer dynamics in a turbulent flow , 2008, Comput. Math. Appl..

[17]  Guillaume Charras,et al.  A short history of blebbing , 2008, Journal of microscopy.

[18]  Kun Xu,et al.  Numerical Navier-Stokes solutions from gas kinetic theory , 1994 .

[19]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[20]  L. Mahadevan,et al.  Non-equilibration of hydrostatic pressure in blebbing cells , 2005, Nature.

[21]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[22]  F. MacKintosh,et al.  Deformation of cross-linked semiflexible polymer networks. , 2003, Physical review letters.

[23]  D. Wirtz,et al.  Strain Hardening of Actin Filament Networks , 2000, The Journal of Biological Chemistry.

[24]  P. Onck,et al.  Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior. , 2007, Physical review letters.

[25]  Robert Lipton Homogenization and Field Concentrations in Heterogeneous Media , 2006, SIAM J. Math. Anal..

[26]  A C BURTON,et al.  MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. , 1964, Biophysical journal.

[27]  G. Albrecht‐Buehler Does blebbing reveal the convulsive flow of liquid and solutes through the cytoplasmic meshwork? , 1982, Cold Spring Harbor symposia on quantitative biology.

[28]  P. Hussey,et al.  Actin dynamics and the elasticity of cytoskeletal networks , 2009 .

[29]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[30]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[31]  D. Boal Mechanics of the Cell: Membranes , 2012 .

[32]  Ilpo Vattulainen,et al.  Strain hardening, avalanches, and strain softening in dense cross-linked actin networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  U. Seifert Modeling nonlinear red cell elasticity. , 1998, Biophysical journal.

[34]  W. T. Grandy,et al.  Kinetic theory : classical, quantum, and relativistic descriptions , 2003 .

[35]  S Chien,et al.  An elastic network model based on the structure of the red blood cell membrane skeleton. , 1996, Biophysical journal.

[36]  Daniel A. Fletcher,et al.  Reversible stress softening of actin networks , 2007, Nature.

[37]  P. Eggli,et al.  Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. , 1998, Cell motility and the cytoskeleton.

[38]  John B. Bell,et al.  Algorithm refinement for the stochastic Burgers' equation , 2007, J. Comput. Phys..

[39]  G. Oster,et al.  Cell spreading and motility: A model lamellipod , 1985 .

[40]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. , 1998, Biophysical journal.

[41]  Erwin Frey,et al.  Elasticity of stiff polymer networks. , 2003, Physical review letters.

[42]  Mary C Boyce,et al.  Constitutive modeling of the stress-strain behavior of F-actin filament networks. , 2008, Acta biomaterialia.

[43]  W. Curtin,et al.  Multiscale modeling of failure in metal matrix composites , 2001 .

[44]  D A Weitz,et al.  Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  John Ockendon,et al.  Applied Solid Mechanics , 2009 .

[46]  E. Weinan,et al.  Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics , 2005 .

[47]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[48]  Donald D. Fitts Statistical mechanics, second edition (Mayer, Joseph Edward) , 1978 .

[49]  I. Kevrekidis,et al.  Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations , 2002, physics/0212108.

[50]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[51]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[52]  Igor Stankovic,et al.  Towards Multiscale Modeling of Metals via Embedded Particle Computer Simulation , 2003, Multiscale Model. Simul..

[53]  F C MacKintosh,et al.  Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  D. W. Scott On optimal and data based histograms , 1979 .

[55]  T. Mitchison,et al.  Actin-Based Cell Motility and Cell Locomotion , 1996, Cell.

[56]  L Mahadevan,et al.  Life and times of a cellular bleb. , 2008, Biophysical journal.

[57]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .

[58]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[59]  William A. Goddard,et al.  Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers , 2001 .

[60]  Sorin Mitran,et al.  A numerical model of cellular blebbing: a volume-conserving, fluid-structure interaction model of the entire cell. , 2010, Journal of biomechanics.

[61]  Ioannis G. Kevrekidis,et al.  Equation-free multiscale computations for a lattice-gas model: coarse-grained bifurcation analysis of the NO+CO reaction on Pt(1 0 0) , 2004 .

[62]  Yale E Goldman,et al.  Force generation in single conventional actomyosin complexes under high dynamic load. , 2006, Biophysical journal.

[63]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[64]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[65]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[66]  S. Suresh,et al.  Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. , 2005, Biophysical journal.

[67]  D Stamenović,et al.  A quantitative model of cellular elasticity based on tensegrity. , 2000, Journal of biomechanical engineering.

[68]  Andrei A. Gusev,et al.  A new multiscale modeling approach for the prediction of mechanical properties of polymer-based nanomaterials , 2006 .

[69]  D. Ingber,et al.  Cellular tensegrity : defining new rules of biological design that govern the cytoskeleton , 2022 .

[70]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[71]  W. Marsden I and J , 2012 .

[72]  Yu Zou,et al.  An equation-free approach to analyzing heterogeneous cell population dynamics , 2007, Journal of mathematical biology.

[73]  George Em Karniadakis,et al.  Accurate coarse-grained modeling of red blood cells. , 2008, Physical review letters.

[74]  M. Zöller,et al.  Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. , 2001, Journal of cell science.

[75]  Jurij Kotar,et al.  The nonlinear mechanical response of the red blood cell , 2007, Physical biology.

[76]  Ron Y Kwon,et al.  A microstructurally informed model for the mechanical response of three-dimensional actin networks , 2008, Computer methods in biomechanics and biomedical engineering.

[77]  Constantinos Theodoropoulos,et al.  Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks , 2002 .

[78]  A. C. Maggs,et al.  Dynamics and rheology of actin solutions , 1996 .