A local extrapolation method for finite elements

In most numerical analyses using the Finite Element Method, several quantities, such as stresses, strains, fluid velocities and gradients, are computed at points in the interior of the solid elements, such as Gauss integration points for instance. Nevertheless, in many applications it is necessary to extrapolate these values to nodal points. That is the case with most visualization tools and post-processors, also in programs with auto-adaptive meshes, large deformations schemes such as Arbitrary Lagrangian-Eulerian Methods, and in programs using the Dynamic Programming Method. A generic methodology to perform this extrapolation in a precise and efficient way is proposed.

[1]  John A. Nairn,et al.  Hierarchical, adaptive, material point method for dynamic energy release rate calculations , 2002 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[3]  David R. Owen,et al.  An introduction to finite element computations , 1979 .

[4]  Takuo Yamagami,et al.  SEARCH FOR CRITICAL SLIP LINES IN FINITE ELEMENT STRESS FIELDS BY DYNAMIC PROGRAMMING. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN GEOMECHANICS, 11-15 APRIL 1988, INNSBRUCK, AUSTRIA. VOLUMES 1 - 3 , 1988 .

[5]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[6]  Miloš Zlámal,et al.  Superconvergence and reduced integration in the finite element method , 1978 .

[7]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[8]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[9]  J. N. Reddy,et al.  Note on an approximate method for computing consistent conjugate stresses in elastic finite elements , 1973 .

[10]  H. Poulos,et al.  Elastic solutions for soil and rock mechanics , 1973 .

[11]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[12]  Nick Levine,et al.  Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .

[13]  A. Zinober Matrices: Methods and Applications , 1992 .

[14]  A. B. Rami Shani,et al.  Matrices: Methods and Applications , 1992 .

[15]  J. T. Oden,et al.  On the calculation of consistent stress distributions in finite element approximations , 1971 .

[16]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method Linear Statics , 2013 .

[17]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[18]  Mohamed S. Gadala,et al.  Recent trends in ALE formulation and its applications in solid mechanics , 2004 .

[19]  P. Lancaster,et al.  The theory of matrices : with applications , 1985 .

[20]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .