Lignocellulose nanocrystals from sugarcane straw

[1]  J. Saddler,et al.  High Production Yield and More Thermally Stable Lignin-Containing Cellulose Nanocrystals Isolated Using a Ternary Acidic Deep Eutectic Solvent , 2020 .

[2]  S. Rowan,et al.  Development, processing and applications of bio-sourced cellulose nanocrystal composites , 2020 .

[3]  Yixiang Wang,et al.  Recent developments and prospective food-related applications of cellulose nanocrystals: a review , 2020, Cellulose.

[4]  S. Bilatto,et al.  Nanocellulose Production in Future Biorefineries: An Integrated Approach Using Tailor-Made Enzymes , 2020 .

[5]  L. Mattoso,et al.  Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials , 2020, ACS Sustainable Chemistry & Engineering.

[6]  M. Peresin,et al.  On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications , 2019, Cellulose.

[7]  M. Beppu,et al.  Tailored chitosan/hyaluronan coatings for tumor cell adhesion: Effects of topography, charge density and surface composition , 2019, Applied Surface Science.

[8]  P. Gane,et al.  Coupling Nanofibril Lateral Size and Residual Lignin to Tailor the Properties of Lignocellulose Films , 2019, Advanced Materials Interfaces.

[9]  J. Jasinski,et al.  Catalytic cleavage of the β-O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst , 2019, Applied Catalysis A: General.

[10]  J. Putaux,et al.  Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions , 2019, Cellulose.

[11]  F. Shimizu,et al.  Ternary nanocomposites based on cellulose nanowhiskers, silver nanoparticles and electrospun nanofibers: Use in an electronic tongue for heavy metal detection , 2019, Sensors and Actuators B: Chemical.

[12]  Kevin J. De France,et al.  Patterned Cellulose Nanocrystal Aerogel Films with Tunable Dimensions and Morphologies as Ultra-Porous Scaffolds for Cell Culture , 2019, ACS Applied Nano Materials.

[13]  Juming Yao,et al.  Simple Synthesis of Flower-like Manganese Dioxide Nanostructures on Cellulose Nanocrystals for High-Performance Supercapacitors and Wearable Electrodes , 2019, ACS Sustainable Chemistry & Engineering.

[14]  D. Harper,et al.  A Novel Method for Fabricating an Electrospun Poly(Vinyl Alcohol)/Cellulose Nanocrystals Composite Nanofibrous Filter with Low Air Resistance for High-Efficiency Filtration of Particulate Matter , 2019, ACS Sustainable Chemistry & Engineering.

[15]  Derval dos Santos Rosa,et al.  Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods , 2019, Resources, Conservation and Recycling.

[16]  L. Mattoso,et al.  Curaua and eucalyptus nanofiber films by continuous casting: mixture of cellulose nanocrystals and nanofibrils , 2019, Cellulose.

[17]  Bing Wei,et al.  Preparation and Characterization of Lignin-Containing Cellulose Nanofibril from Poplar High-Yield Pulp via TEMPO-Mediated Oxidation and Homogenization , 2019, ACS Sustainable Chemistry & Engineering.

[18]  Audrey Moores,et al.  Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. , 2018, Chemical reviews.

[19]  Jeremy C. Smith,et al.  Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy , 2018, Nature Reviews Chemistry.

[20]  M. D. Ferreira,et al.  Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste , 2018, Industrial Crops and Products.

[21]  Sandor Nietzsche,et al.  Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state , 2018, Materials Today.

[22]  S. Rowan,et al.  Strong, Rebondable, Dynamic Cross-Linked Cellulose Nanocrystal Polymer Nanocomposite Adhesives. , 2018, ACS applied materials & interfaces.

[23]  R. Reiner,et al.  Production of high lignin-containing and lignin-free cellulose nanocrystals from wood , 2018, Cellulose.

[24]  Sandeep S. Nair,et al.  Effects of Lignin Content on Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Micro Particles of Spray Dried Cellulose Nanofibrils , 2018, ACS Sustainable Chemistry & Engineering.

[25]  R. Reiner,et al.  New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. , 2018, Carbohydrate polymers.

[26]  E. deAzevedo,et al.  Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis , 2018 .

[27]  S. V. D. Bosch,et al.  Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. , 2018, Chemical Society reviews.

[28]  D. Topgaard,et al.  Nanostructured Lipid‐Based Films for Substrate‐Mediated Applications in Biotechnology , 2018, Advanced functional materials.

[29]  Baodong Zheng,et al.  Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis , 2018, Scientific Reports.

[30]  Jeremy C. Smith,et al.  Organosolv-Water Cosolvent Phase Separation on Cellulose and its Influence on the Physical Deconstruction of Cellulose: A Molecular Dynamics Analysis , 2017, Scientific Reports.

[31]  J. Maia,et al.  Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse. , 2017, Carbohydrate polymers.

[32]  L. Mattoso,et al.  Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp. , 2017, Carbohydrate polymers.

[33]  J. Y. Zhu,et al.  Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. , 2017, Carbohydrate polymers.

[34]  S. Mondal Preparation, properties and applications of nanocellulosic materials. , 2017, Carbohydrate polymers.

[35]  Heitor Cantarella,et al.  Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production , 2017 .

[36]  Morsyleide de Freitas Rosa,et al.  Nanocellulose in bio-based food packaging applications , 2017 .

[37]  V. Thakur,et al.  Recent progress in cellulose nanocrystals: sources and production. , 2017, Nanoscale.

[38]  S. Rowan,et al.  Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals. , 2017, Carbohydrate polymers.

[39]  M. Rosa,et al.  A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways , 2016 .

[40]  Od,et al.  Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw , 2016 .

[41]  L. Mattoso,et al.  Feasibility of Manufacturing Cellulose Nanocrystals from the Solid Residues of Second-Generation Ethanol Production from Sugarcane Bagasse , 2016, BioEnergy Research.

[42]  C. Farinas,et al.  Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques , 2016 .

[43]  William O. S. Doherty,et al.  Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification , 2016 .

[44]  Xuan Yang,et al.  Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials , 2015, Advanced materials.

[45]  E. R. Morais,et al.  A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries , 2015 .

[46]  A. Curvelo,et al.  Subcritical Water: A Method for Green Production of Cellulose Nanocrystals , 2015 .

[47]  E. deAzevedo,et al.  Quantitative 13C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass , 2015, Biotechnology for Biofuels.

[48]  C. Farinas,et al.  2G ethanol from the whole sugarcane lignocellulosic biomass , 2015, Biotechnology for Biofuels.

[49]  O. Rojas,et al.  Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films , 2015 .

[50]  Luiz Pereira Ramos,et al.  Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. , 2014, Carbohydrate polymers.

[51]  Alain Dufresne,et al.  Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges , 2014 .

[52]  A. Dufresne,et al.  Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. , 2014, Nanoscale.

[53]  A. French Idealized powder diffraction patterns for cellulose polymorphs , 2014, Cellulose.

[54]  Arnaldo Walter,et al.  Sugarcane straw availability, quality, recovery and energy use: A literature review , 2013 .

[55]  Donghai Wang,et al.  X-ray scattering studies of lignocellulosic biomass: a review. , 2013, Carbohydrate polymers.

[56]  H. A. Silvério,et al.  Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls , 2013 .

[57]  L. Mattoso,et al.  Solid state ball milling as a green strategy to improve the dispersion of cellulose nanowhiskers in starch-based thermoplastic matrices , 2012, Cellulose.

[58]  P. Tingaut,et al.  Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. , 2012, Biomacromolecules.

[59]  Rajesh D. Anandjiwala,et al.  Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach , 2011 .

[60]  L. Mattoso,et al.  Extraction and characterization of cellulose whiskers from commercial cotton fibers , 2011 .

[61]  L. Mattoso,et al.  Cellulose nanofibers from curaua fibers , 2010 .

[62]  Morsyleide de Freitas Rosa,et al.  Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior , 2010 .

[63]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[64]  M. Roman,et al.  Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. , 2004, Biomacromolecules.

[65]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .

[66]  Yi Zheng,et al.  Investigation of dynamic changes of substrate features on enzymatic hydrolysis of lignocellulosic biomass , 2018 .

[67]  L. Mattoso,et al.  Enzymatic Conversion of Sugarcane Lignocellulosic Biomass as a Platform for the Production of Ethanol, Enzymes and Nanocellulose , 2017 .

[68]  L. Mattoso,et al.  Sugarcane bagasse whiskers: Extraction and characterizations , 2011 .

[69]  M. Rosa,et al.  Procedimentos para análise lignocelulósica. , 2010 .

[70]  K. Oksman,et al.  Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites , 2006 .