Partial and approximate symmetry detection for 3D geometry

"Symmetry is a complexity-reducing concept [...]; seek it every-where." - Alan J. PerlisMany natural and man-made objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important high-level information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.

[1]  Felix . Klein,et al.  Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .

[2]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[3]  P.V.C. Hough,et al.  Machine Analysis of Bubble Chamber Pictures , 1959 .

[4]  W. Magnus,et al.  Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations , 1966 .

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  Gaston H. Gonnet,et al.  Expected Length of the Longest Probe Sequence in Hash Code Searching , 1981, JACM.

[7]  Mikhail J. Atallah,et al.  On Symmetry Detection , 1985, IEEE Transactions on Computers.

[8]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[9]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[10]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[11]  Hagit Hel-Or,et al.  Symmetry as a Continuous Feature , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[13]  Changming Sun,et al.  3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[15]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[16]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[17]  Nancy M. Amato,et al.  Choosing good distance metrics and local planners for probabilistic roadmap methods , 2000, IEEE Trans. Robotics Autom..

[18]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[19]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[20]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor , 2002, ECCV.

[21]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Steve Oudot,et al.  Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.

[23]  Helmut Pottmann,et al.  From curve design algorithms to the design of rigid body motions , 2004, The Visual Computer.

[24]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[25]  D. Donoho,et al.  Adaptive multiscale detection of filamentary structures embedded in a background of uniform random points , 2003 .

[26]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[27]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[28]  Yanxi Liu,et al.  A computational model for periodic pattern perception based on frieze and wallpaper groups , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[30]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[31]  Doug L. James,et al.  Skinning mesh animations , 2005, SIGGRAPH 2005.

[32]  Richard A. Volz,et al.  Optimal algorithms for symmetry detection in two and three dimensions , 1985, The Visual Computer.

[33]  Peter Meer,et al.  Simultaneous multiple 3D motion estimation via mode finding on Lie groups , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[34]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[35]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[36]  Xiaoming Huo,et al.  ADAPTIVE MULTISCALE DETECTION OF FILAMENTARY STRUCTURES IN A BACKGROUND OF UNIFORM RANDOM POINTS 1 , 2006 .

[37]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.