An odyssey to operando environmental transmission electron microscopy: What’s next?

[1]  H. Abruña,et al.  Operando studies reveal active Cu nanograins for CO_2 electroreduction , 2023, Nature.

[2]  Hongwei Yan,et al.  Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction , 2022, Nature Communications.

[3]  Antonio J. Martín,et al.  Unifying views on catalyst deactivation , 2022, Nature Catalysis.

[4]  G. Hutchings,et al.  Reversible Growth of Gold Nanoparticles in the Low-Temperature Water–Gas Shift Reaction , 2022, ACS nano.

[5]  L. Jones,et al.  The User Adjustable Pole-piece: Expanding TEM Functionality Without Compromise , 2022, Microscopy and Microanalysis.

[6]  M. Willinger,et al.  Dynamic interplay between metal nanoparticles and oxide support under redox conditions , 2022, Science.

[7]  H. Islam,et al.  A cell design for correlative hard X-ray nanoprobe and electron microscopy studies of catalysts under in situ conditions , 2022, Journal of synchrotron radiation.

[8]  A. Yoon,et al.  Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity , 2021, Nature Communications.

[9]  Hui Zhang,et al.  Design of Highly Durable Core−Shell Catalysts by Controlling Shell Distribution Guided by In‐Situ Corrosion Study , 2021, Advanced materials.

[10]  M. Willinger,et al.  Phase Coexistence and Structural Dynamics of Redox Metal Catalysts Revealed by Operando TEM , 2021, Advanced materials.

[11]  F. Gervasio,et al.  4D imaging of soft matter in liquid water , 2021, bioRxiv.

[12]  U. Bangert,et al.  Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy , 2020, Scientific Reports.

[13]  R. Schlögl,et al.  Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope? , 2020, Topics in Catalysis.

[14]  Sergei V. Kalinin,et al.  Towards data-driven next-generation transmission electron microscopy , 2020, Nature Materials.

[15]  T. Sheppard,et al.  Reduction and Carburization of Iron Oxides for Fischer-Tropsch Synthesis , 2020, Microscopy and Microanalysis.

[16]  K. Mølhave,et al.  Unhindered Brownian Motion of Individual Nanoparticles in Liquid Phase Scanning Transmission Electron Microscopy. , 2020, Nano letters.

[17]  T. Lunkenbein,et al.  Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction , 2020, Nature Communications.

[18]  N. de Jonge,et al.  Liquid‐Phase Electron Microscopy for Soft Matter Science and Biology , 2020, Advanced materials.

[19]  U. Mirsaidov,et al.  Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity , 2020, Nature Communications.

[20]  R. Schlögl,et al.  Insights into Chemical Dynamics and Their Impact on the Reactivity of Pt Nanoparticles during CO Oxidation by Operando TEM , 2020, ACS Catalysis.

[21]  U. Bangert,et al.  Visualising early-stage liquid phase organic crystal growth via liquid cell electron microscopy. , 2020, Nanoscale.

[22]  Xiaobo Chen,et al.  In Situ Transmission Electron Microscopy on Energy‐Related Catalysis , 2019, Advanced Energy Materials.

[23]  Ze Zhang,et al.  Oxide Catalysts with Ultrastrong Resistance to SO2 Deactivation for Removing Nitric Oxide at Low Temperature , 2019, Advanced materials.

[24]  M. Willinger,et al.  Growth and Termination Dynamics of Multiwalled Carbon Nanotubes at Near Ambient Pressure: An in Situ Transmission Electron Microscopy Study , 2019, Nano letters.

[25]  U. Mirsaidov,et al.  Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles , 2019, Advanced Functional Materials.

[26]  H. Friedrich,et al.  Liquid–liquid phase separation during amphiphilic self-assembly , 2019, Nature Chemistry.

[27]  D. Su,et al.  In Situ Transmission Electron Microscopy for Energy Applications , 2019, Joule.

[28]  M. Bosman,et al.  In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles. , 2018, Journal of the American Chemical Society.

[29]  Xiaoqing Pan,et al.  Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles , 2018, Nature Communications.

[30]  Jun Lu,et al.  Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy , 2017, Nature Communications.

[31]  J. Frenken,et al.  Operando Research in Heterogeneous Catalysis , 2017 .

[32]  J. Xu,et al.  The “Climate” system: Nano-Reactor for in-situ analysis of solid-gas interactions inside the TEM , 2016, 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS).

[33]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[34]  R. Tappero,et al.  Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes , 2015, Nature Communications.

[35]  Peter A. Crozier,et al.  In situ and operando transmission electron microscopy of catalytic materials , 2015 .

[36]  J. F. Creemer,et al.  Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. , 2014, Nature materials.

[37]  F. Tichelaar,et al.  Localised corrosion in aluminium alloy 2024-T3 using in situ TEM. , 2013, Chemical communications.

[38]  Tuncay Alan,et al.  In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C. , 2012, Ultramicroscopy.

[39]  Simon J. L. Billinge,et al.  The nanostructure problem , 2010 .

[40]  P. Crozier,et al.  In situ preparation of Ni–Cu/TiO2 bimetallic catalysts , 2009 .

[41]  J. F. Creemer,et al.  Atomic-scale electron microscopy at ambient pressure. , 2008, Ultramicroscopy.

[42]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.