Operator Preconditioning for a Class of Inequality Constrained Optimal Control Problems

We propose and analyze two strategies for preconditioning linear operator equations that arise in PDE constrained optimal control in the framework of conjugate gradient methods. Our particular focus is on control or state constrained problems, where we consider the question of robustness with respect to critical parameters. We construct a preconditioner that yields favorable robustness properties with respect to critical parameters.

[1]  Joachim Schöberl,et al.  A Robust Multigrid Method for Elliptic Optimal Control Problems , 2011, SIAM J. Numer. Anal..

[2]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[3]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[4]  Ekkehard W. Sachs,et al.  Block Preconditioners for KKT Systems in PDE—Governed Optimal Control Problems , 2001 .

[5]  Andreas Günther,et al.  An interior point algorithm with inexact step computation in function space for state constrained optimal control , 2011, Numerische Mathematik.

[6]  Martin Stoll,et al.  Preconditioners for state‐constrained optimal control problems with Moreau–Yosida penalty function , 2014, Numer. Linear Algebra Appl..

[7]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[8]  Nicholas I. M. Gould,et al.  Preconditioning Saddle-Point Systems with Applications in Optimization , 2010, SIAM J. Sci. Comput..

[9]  Anton Schiela,et al.  Barrier Methods for Optimal Control Problems with State Constraints , 2009, SIAM J. Optim..

[10]  Karl Kunisch,et al.  Feasible and Noninterior Path-Following in Constrained Minimization with Low Multiplier Regularity , 2006, SIAM J. Control. Optim..

[11]  Martin Stoll,et al.  Preconditioning for partial differential equation constrained optimization with control constraints , 2011, Numer. Linear Algebra Appl..

[12]  Michael Hinze,et al.  A note on the approximation of elliptic control problems with bang-bang controls , 2010, Computational Optimization and Applications.

[13]  Arnd Rösch,et al.  A virtual control concept for state constrained optimal control problems , 2009, Comput. Optim. Appl..

[14]  Peter Deuflhard,et al.  Adaptive Numerical Solution of PDEs , 2012 .

[15]  Ekkehard W. Sachs,et al.  Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..

[16]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[17]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .

[18]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[19]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[20]  Anton Schiela A Simplified Approach to Semismooth Newton Methods in Function Space , 2008, SIAM J. Optim..

[21]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[22]  Martin Stoll,et al.  All-at-once preconditioning in PDE-constrained optimization , 2010, Kybernetika.

[23]  Gerd Wachsmuth,et al.  Necessary Conditions for Convergence Rates of Regularizations of Optimal Control Problems , 2011, System Modelling and Optimization.

[24]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[25]  Alfio Borzì,et al.  Smoothers for control- and state-constrained optimal control problems , 2007 .

[26]  Kazufumi Ito,et al.  The primal-dual active set strategy as a semi-smooth Newton method for quadratic problems with affine constraints , 2002 .

[27]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[28]  Volker Schulz,et al.  Fast Solution of Discretized Optimization Problems , 2001 .