Phorbol esters stimulate phosphorylation of eukaryotic initiation factors 3, 4B, and 4F.

Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, was isolated by m7 GTP-Sepharose affinity chromatography from rabbit reticulocytes incubated with [32P]orthophosphate. Following treatment of reticulocytes with phorbol 12-myristate 13-acetate (PMA) for 30 min, stimulation of phosphorylation of both the p25 and p220 subunits was observed (2.5-5-fold). Two variants were observed for p25 in the absence and presence of PMA when analyzed by two-dimensional gel electrophoresis. Only the more acidic of these was phosphorylated, with the level of phosphorylation increased upon PMA treatment. One main variant was observed for p220; following PMA stimulation, in addition to increased labeling of this variant, two more acidic phosphorylated variants were observed. Low levels of eIF-3 and -4B were associated with purified eIF-4F, and PMA treatment stimulated phosphorylation of eIF-3 (p170) by 2-4-fold and eIF-4B by 1.5-2.5 fold. Two-dimensional phosphopeptide mapping of p25 phosphorylated in the absence or presence of PMA generated a single tryptic phosphopeptide, suggesting a single phosphorylation site. A more complex phosphopeptide map was observed with p220 subunit. The maps for both subunits contained the same phosphopeptides as those obtained when eIF-4F was phosphorylated in vitro by the Ca2+/phospholipid-dependent protein kinase, indicating this protein kinase directly modulated eIF-4F in response to PMA.