An Improved DSATUR‐Based Branch‐and‐Bound Algorithm for the Vertex Coloring Problem

Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph in such a way that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR-based Branch-and-Bound algorithm (DSATUR) is an effective exact algorithm for the VCP. One of its main drawback is that a lower bound is computed only once and it is never updated. We introduce a reduced graph which allows the computation of lower bounds at nodes of the branching tree. We compare the effectiveness of different classical VCP bounds, plus a new lower bound based on the 1 -to- 1 mapping between VCPs and Stable Set Problems. Our new DSATUR outperforms the state of the art for random VCP instances with high density, significantly increasing the size of instances solved to proven optimality. © 2016 Wiley Periodicals, Inc. NETWORKS, Vol. 69(1), 124–141 2017

[1]  Dusanka Janezic,et al.  A Branch and Bound Algorithm for Matching Protein Structures , 2007, ICANNGA.

[2]  Isabel Méndez-Díaz,et al.  A cutting plane algorithm for graph coloring , 2008, Discret. Appl. Math..

[3]  Nicolas Zufferey,et al.  Graph colouring approaches for a satellite range scheduling problem , 2008, J. Sched..

[4]  Fabio Furini,et al.  Solving Vertex Coloring Problems as Maximum Weighted Stable Set Problems , 2017, CTW.

[5]  William J. Cook,et al.  Maximum-weight stable sets and safe lower bounds for graph coloring , 2012, Mathematical Programming Computation.

[6]  N. Deo,et al.  Techniques for analyzing dynamic random graph models of web‐like networks: An overview , 2008, Networks.

[7]  Paolo Dell'Olmo,et al.  Solving the minimum‐weighted coloring problem , 2001, Networks.

[8]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[9]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[10]  Sajal K. Das,et al.  Localization and scheduling protocols for actor-centric sensor networks , 2012, Networks.

[11]  Pablo San Segundo Carrillo A new DSATUR-based algorithm for exact vertex coloring , 2011 .

[12]  Vincent Jost,et al.  A one-to-one correspondence between colorings and stable sets , 2008, Oper. Res. Lett..

[13]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[14]  Pablo San Segundo,et al.  An exact bit-parallel algorithm for the maximum clique problem , 2011, Comput. Oper. Res..

[15]  Pablo San Segundo,et al.  An improved bit parallel exact maximum clique algorithm , 2013, Optim. Lett..

[16]  Hans D. Mittelmann,et al.  A server for automated performance analysis of benchmarking data , 2006, Optim. Methods Softw..

[17]  Michel Gamache,et al.  A graph coloring model for a feasibility problem in monthly crew scheduling with preferential bidding , 2007, Comput. Oper. Res..

[18]  Kate Smith-Miles,et al.  Exploring the role of graph spectra in graph coloring algorithm performance , 2014, Discret. Appl. Math..

[19]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[20]  Graciela L. Nasini,et al.  A DSATUR-based algorithm for the Equitable Coloring Problem , 2015, Comput. Oper. Res..

[21]  Edward C. Sewell,et al.  An improved algorithm for exact graph coloring , 1993, Cliques, Coloring, and Satisfiability.

[22]  Juan José Miranda Bront,et al.  A branch‐and‐price algorithm for the (k,c)‐coloring problem , 2015, Networks.

[23]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[24]  Fred S. Roberts,et al.  I-Colorings, I-Phasings, and I-Intersection assignments for graphs, and their applications , 1983, Networks.

[25]  Pierre Hansen,et al.  Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results , 2005, Discret. Optim..

[26]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[27]  A. J. Hoffman,et al.  ON EIGENVALUES AND COLORINGS OF GRAPHS, II , 1970 .

[28]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[29]  Pascal Brisset,et al.  Graph Coloring for Air Traffic Flow Management , 2004, Ann. Oper. Res..

[30]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[31]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Paolo Toth,et al.  An exact approach for the Vertex Coloring Problem , 2011, Discret. Optim..

[34]  S. L. Hakimi,et al.  Upper Bounds on the Order of a Clique of a Graph , 1972 .

[35]  John L. Hennessy,et al.  The priority-based coloring approach to register allocation , 1990, TOPL.

[36]  Federico Malucelli,et al.  Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation , 2012, INFORMS J. Comput..

[37]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[38]  Victor A. Campos,et al.  On the asymmetric representatives formulation for the vertex coloring problem , 2005, Discret. Appl. Math..

[39]  Sheldon H. Jacobson,et al.  A Wide Branching Strategy for the Graph Coloring Problem , 2014, INFORMS J. Comput..

[40]  Chu-Min Li,et al.  An Efficient Branch-and-Bound Algorithm Based on MaxSAT for the Maximum Clique Problem , 2010 .

[41]  Fabio Furini,et al.  Lower Bounding Techniques for DSATUR-based Branch and Bound , 2016, Electron. Notes Discret. Math..

[42]  Qinghua Wu,et al.  A review on algorithms for maximum clique problems , 2015, Eur. J. Oper. Res..

[43]  Dominique de Werra,et al.  On a graph coloring problem arising from discrete tomography , 2008, Networks.

[44]  Gintaras Palubeckis On the recursive largest first algorithm for graph colouring , 2008, Int. J. Comput. Math..

[45]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.