Modified Smith predictor with PID structure for control of multivariable processes

Industrial processes with dead time, can be controlled using a model-based control strategy called 'Smith predictor' (SP) to compensate for the dead time part. Most of the control loops in process industries use PID loops. By introducing a tuning parameter (Ksp) in the control law, to switch between SP and proportional-integral-derivative (PID) modes, an SP with PID (SP-PID) is synthesised in this work to counteract the offset and to obtain a better performance during set-point change as well as load changes. Performance of SP-PID to control linear MIMO systems (square, stable, non-singular linear) are carried-out with decentralised scheme by studying set-point change and load disturbances separately. Present results have been compared with similar existing control strategies. Sensitivity and robustness issues of the present control scheme are also discussed.

[1]  Somanath Majhi,et al.  Obtaining controller parameters for a new Smith predictor using autotuning , 2000, Autom..

[2]  William L. Luyben,et al.  Identification and Tuning of Integrating Processes with Deadtime and Inverse Response , 2003 .

[3]  Lap C. To Nonlinear control techniques in alumina refineries , 1996 .

[4]  Masami Ito,et al.  A process-model control for linear systems with delay , 1981 .

[5]  William L. Luyben,et al.  Tuning proportional-integral controllers for processes with both inverse response and deadtime , 2000 .

[6]  Yu Zhang,et al.  Decoupling Smith Predictor Design for Multivariable Systems with Multiple Time Delays , 2000 .

[7]  Cheng-Ching Yu,et al.  A Controller with Adjustable Dead Time Compensation , 2005 .

[8]  Min-Sen Chiu,et al.  Decoupling internal model control for multivariable systems with multiple time delays , 2002 .

[9]  Dale E. Seborg,et al.  Control of multivariable systems containing time delays using a multivariable smith predictor , 1974 .

[10]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[11]  C. C. Hang,et al.  A new Smith predictor for controlling a process with an integrator and long dead-time , 1994, IEEE Trans. Autom. Control..

[12]  W. H. Ray,et al.  High‐Performance multivariable control strategies for systems having time delays , 1986 .

[13]  J. B. Gomm,et al.  Solution to the Shell standard control problem using genetically tuned PID controllers , 2002 .

[14]  W. Luyben,et al.  Tuning PI controllers for integrator/dead time processes , 1992 .

[15]  Pradeep B. Deshpande Multivariable process control , 1989 .

[16]  M. Matausek,et al.  A modified Smith predictor for controlling a process with an integrator and long dead-time , 1996, IEEE Trans. Autom. Control..

[17]  Babatunde A. Ogunnaike,et al.  Multivariable controller design for linear systems having multiple time delays , 1979 .

[18]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[19]  M. Chidambaram,et al.  Enhanced Smith Predictor for Unstable Processes with Time Delay , 2005 .

[20]  F. Doyle,et al.  A variable time delay compensator for multivariable linear processes , 2005 .

[21]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[22]  Rames C. Panda,et al.  An Integrated Modified Smith Predictor with PID Controller for Integrator Plus Deadtime Processes , 2006 .

[23]  Tore Hägglund,et al.  Performance comparison between PID and dead-time compensating controllers , 2002 .

[24]  Cheng-Ching Yu,et al.  Autotuning of PID Controllers: Relay Feedback Approach , 1999 .

[25]  M. Chidambaram,et al.  Smith delay compensator for multivariable non-square systems with multiple time delays , 2006, Comput. Chem. Eng..

[26]  W. Luyben Tuning proportional-integral-derivative controllers for integrator/deadtime processes , 1996 .