P-Partitions and a Multi-Parameter Klyachko Idempotent

Because they play a role in our understanding of the symmetric group algebra, Lie idempotents have received considerable attention. The Klyachko idempotent has attracted interest from combinatorialists, partly because its denition involves the major index of permutations. For the symmetric group Sn, we look at the symmetric group algebra with coecients from the eld of rational functions in n variables q1;:::;qn .I n this setting, we can dene an n-parameter generalization of the Klyachko idempotent, and we show it is a Lie idempotent in the appropriate sense. Somewhat surprisingly, our proof that it is a Lie element emerges from Stanley’s theory of P -partitions.

[1]  Daniel Krob,et al.  Noncommutative Symmetric Functions II: Transformations of Alphabets , 1997, Int. J. Algebra Comput..

[2]  Jason E. Fulman Applications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles , 2001 .

[3]  David J. Benson,et al.  METHODS OF REPRESENTATION THEORY With Applications to Finite Groups and Orders, Volume II , 1988 .

[4]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[5]  A Solomon descent theory for the wreath products ≀_{} , 2005, math/0503011.

[6]  Florent Hivert,et al.  Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions , 2000 .

[7]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[8]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[10]  A. Lascoux,et al.  Crystal graphs andq-analogues of weight multiplicities for the root systemAn , 1995 .

[11]  Christophe Reutenauer,et al.  On Dynkin and Klyachko Idempotents in Graded Bialgebras , 2002, Adv. Appl. Math..

[12]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[13]  Jason E. Fulman Affine Shuffles, Shuffles with Cuts, the Whitehouse Module, and Patience Sorting , 1999, math/9910087.

[14]  Jason Fulman Applications of the Brauer Complex: Card Shuffling, Permutation Statistics, and Dynamical Systems , 2001 .

[15]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[16]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[17]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[18]  R. Stanley Ordered Structures And Partitions , 1972 .

[19]  Z-Measures on Partitions, Robinson-Schensted-Knuth Correspondence, and beta=2 Random Matrix Ensembles , 1999, math/9905189.

[20]  Gérard Henry Edmond Duchamp,et al.  Déformations de projecteurs de Lie , 1994 .

[21]  P. Deift Integrable systems and combinatorial theory , 2000 .

[22]  P. Diaconis,et al.  Trailing the Dovetail Shuffle to its Lair , 1992 .

[23]  Adriano M. Garsia,et al.  Combinatorial methods in the theory of Cohen-Macaulay rings , 1980 .

[24]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[25]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[26]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[27]  C. Tracy,et al.  On the distributions of the lengths of the longest monotone subsequences in random words , 1999, math/9904042.

[28]  Adriano M. Garsia,et al.  Combinatorics of the Free Lie Algebra and the Symmetric Group , 1990 .

[29]  A. Klyachko Lie elements in the tensor algebra , 1974 .

[30]  Adriano M. Garsia,et al.  A decomposition of Solomon's descent algebra , 1989 .

[31]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[32]  Jason Fulman,et al.  Semisimple Orbits of Lie Algebras and Card-Shuffling Measures on Coxeter Groups , 1997, math/9712243.

[33]  G. Kuperberg Random words, quantum statistics, central limits, Random matrices , 1999, math/9909104.

[34]  Alain,et al.  CRYSTAL GRAPHS AND q-ANALOGUES OF WEIGHT MULTIPLICITIES FOR THE ROOT SYSTEM A n ∗ , 1995 .