Anomalous diffusion, dilation, and erosion in image processing

ABSTRACT In this paper, anomalous sub- and super-diffusion arising in image processing is considered and is modelled by a diffusion equation with fractional time derivative. It might serve as a building block for the construction of various filters. The resulting partial differential equation is discretized in space with centred differences and in time with the explicit or implicit Euler method, respectively. A numerical investigation is performed to illustrate new and interesting results. Additionally, the time derivative of the partial differential equation describing dilation and erosion is replaced by a fractional time derivative and then solved numerically. Interesting new questions arise from the presented numerical results. A short summary and outlook conclude this article.

[1]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[2]  J. Miller Numerical Analysis , 1966, Nature.

[3]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[4]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[5]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[6]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[7]  C. Lubich,et al.  Fractional linear multistep methods for Abel-Volterra integral equations of the second kind , 1985 .

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  C. Lubich,et al.  A Stability Analysis of Convolution Quadraturea for Abel-Volterra Integral Equations , 1986 .

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[12]  Petros Maragos,et al.  Evolution equations for continuous-scale morphology , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[14]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[15]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[16]  Rein van den Boomgaard,et al.  Numerical Solution Schemes for Continuous-Scale Morphology , 1999, Scale-Space.

[17]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[18]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[19]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[20]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[21]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[22]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[23]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[24]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[25]  Anrong Dang,et al.  Co-histogram and Image Degradation Evaluation , 2004, ICIAR.

[26]  M. Newman,et al.  From The Cover: Diffusion-based method for producing density-equalizing maps. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Marc Weilbeer,et al.  Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background , 2005 .

[28]  Joachim Weickert,et al.  The Bessel Scale-Space , 2005, DSSCV.

[29]  Roberto Garrappa,et al.  On Multistep Methods for Differential Equations of Fractional Order , 2006 .

[30]  Michael Breuß,et al.  A Shock-Capturing Algorithm for the Differential Equations of Dilation and Erosion , 2006, Journal of Mathematical Imaging and Vision.

[31]  Roberto Garrappa,et al.  Explicit methods for fractional differential equations and their stability properties , 2009 .

[32]  Alfred M. Bruckstein,et al.  Scale Space and Variational Methods in Computer Vision , 2011, Lecture Notes in Computer Science.

[33]  Saptarshi Das,et al.  Fractional Order Signal Processing: Introductory Concepts and Applications , 2011 .

[34]  Teodor M. Atanackovic,et al.  Fully fractional anisotropic diffusion for image denoising , 2011, Math. Comput. Model..

[35]  I. Petráš Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab , 2011 .

[36]  Eduardo Cuesta,et al.  Image structure preserving denoising using generalized fractional time integrals , 2012, Signal Process..

[37]  Abdon Atangana,et al.  The Time-Fractional Coupled-Korteweg-de-Vries Equations , 2013 .

[38]  A. Atangana,et al.  A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions , 2013 .

[39]  Bernhard Burgeth,et al.  An approach to color-morphology based on Einstein addition and Loewner order , 2014, Pattern Recognit. Lett..

[40]  Wei Zhang,et al.  A fractional diffusion-wave equation with non-local regularization for image denoising , 2014, Signal Process..

[41]  Dacheng Tao,et al.  Recent Progress in Image Deblurring , 2014, ArXiv.

[42]  William Rundell,et al.  A tutorial on inverse problems for anomalous diffusion processes , 2015, 1501.00251.

[43]  Roberto Garrappa,et al.  Trapezoidal methods for fractional differential equations: Theoretical and computational aspects , 2015, Math. Comput. Simul..

[44]  Bernhard Burgeth,et al.  Processing Multispectral Images via Mathematical Morphology , 2015, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data.

[45]  Michael Breuß,et al.  PDE-Based Color Morphology Using Matrix Fields , 2015, SSVM.

[46]  Thomas Schultz,et al.  Visualization and Processing of Higher Order Descriptors for Multi-Valued Data , 2015 .

[47]  Yangquan Chen,et al.  Fractional calculus in image processing: a review , 2016, ArXiv.

[48]  Daniel Baffet,et al.  High-Order Accurate Local Schemes for Fractional Differential Equations , 2017, J. Sci. Comput..

[49]  D. S. Oliveira,et al.  On fractional derivatives , 2017 .