Generic transport formula for a system driven by Markovian reservoirs

We present a generic, compact formula for the current flowing in interacting and non-interacting systems which are driven out-of-equilibrium by biased reservoirs described by Lindblad jump operators. We show that, in the limit of high temperature and chemical potential, our formula is equivalent to the well-known Meir-Wingreen formula, which describes the current flowing through a system connected to fermionic baths, therefore bridging the gap between the two formalisms. Our formulation gives a systematic way to address the transport properties of correlated systems strongly driven out of equilibrium. As an illustration, we provide explicit calculations of the current in three cases : {\it i)} a single-site impurity {\it ii)} a free fermionic chain {\it iii)} a fermionic chain with loss/gain terms along the chain. In this last case, we find that the current across the system has the same behavior for loss or gain terms and depends on the loss/gain rate in a non-monotonic way.

[1]  T. Esslinger,et al.  Connecting strongly correlated superfluids by a quantum point contact , 2015, Science.

[2]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[3]  A. Mirlin,et al.  Cold bosons in the Landauer setup , 2011, 1111.4925.

[4]  Linda S. L. Tan Explicit inverse of tridiagonal matrix with applications in autoregressive modelling , 2018, IMA Journal of Applied Mathematics.

[5]  A. Kamenev Field Theory of Non-Equilibrium Systems , 2011 .

[6]  M. Rizzi,et al.  Optimal persistent currents for interacting bosons on a ring with a gauge field. , 2013, Physical review letters.

[7]  M. Znidaric Spin transport in a one-dimensional anisotropic Heisenberg model. , 2011, Physical review letters.

[8]  M. Bauer,et al.  Stochastic dissipative quantum spin chains (I) : Quantum fluctuating discrete hydrodynamics , 2017, 1706.03984.

[9]  T. Esslinger,et al.  Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice , 2017, 1708.01250.

[10]  A. Hewson,et al.  The Kondo Problem to Heavy Fermions: Addendum , 1993 .

[11]  M. Znidaric Weak Integrability Breaking: Chaos with Integrability Signature in Coherent Diffusion. , 2020, Physical review letters.

[12]  Henrik Bruus,et al.  Many-body quantum theory in condensed matter physics - an introduction , 2004 .

[13]  Tomaz Prosen,et al.  Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.

[14]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[15]  Eugene P. Wigner,et al.  Capture of Slow Neutrons , 1936 .

[16]  M. Springford The Kondo problem to heavy fermions , 1993 .

[17]  M. Znidaric,et al.  Asymmetry in energy versus spin transport in certain interacting disordered systems , 2018, Physical Review B.

[18]  T. Prosen Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport. , 2011, Physical review letters.

[19]  S. Gopalakrishnan,et al.  Kinetic Theory of Spin Diffusion and Superdiffusion in XXZ Spin Chains. , 2018, Physical review letters.

[20]  M. Buchhold,et al.  Keldysh field theory for driven open quantum systems , 2015, Reports on progress in physics. Physical Society.

[21]  H. Katsura,et al.  Dissipative quantum Ising chain as a non-Hermitian Ashkin-Teller model , 2019, Physical Review B.

[22]  Y. Dubi,et al.  Effects of disorder and interactions in environment assisted quantum transport , 2020, Physical Review Research.

[23]  TRANSPORT AND CONSERVATION LAWS , 1996, cond-mat/9611007.

[24]  M. Znidaric Exact solution for a diffusive nonequilibrium steady state of an open quantum chain , 2010, 1005.1271.

[25]  Chu Guo,et al.  Solutions for bosonic and fermionic dissipative quadratic open systems , 2017 .

[26]  T. Kriecherbauer,et al.  A pedestrian's view on interacting particle systems, KPZ universality and random matrices , 2008, 0803.2796.

[27]  M. Znidaric Dephasing-induced diffusive transport in the anisotropic Heisenberg model , 2009, 0912.0163.

[28]  C. Lobb,et al.  Contact resistance and phase slips in mesoscopic superfluid atom transport. , 2015, Physical review. A.

[29]  T. Esslinger,et al.  Observation of quantized conductance in neutral matter , 2014, Nature.

[30]  Antoine Georges,et al.  A Thermoelectric Heat Engine with Ultracold Atoms , 2013, Science.

[31]  T. Prosen,et al.  Exact Bethe Ansatz Spectrum of a Tight-Binding Chain with Dephasing Noise. , 2016, Physical review letters.

[32]  D. Bernard,et al.  Open Quantum Symmetric Simple Exclusion Process. , 2019, Physical review letters.

[33]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[34]  Physical Review , 1965, Nature.

[35]  A. Daley,et al.  Reservoir engineering of Cooper-pair-assisted transport with cold atoms , 2019, New Journal of Physics.

[36]  M. Rigol,et al.  Low-frequency behavior of off-diagonal matrix elements in the integrable XXZ chain and in a locally perturbed quantum-chaotic XXZ chain , 2020 .

[37]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[38]  D. Z. Anderson,et al.  Atomtronics: Ultracold-atom analogs of electronic devices , 2007 .

[39]  M. Rigol,et al.  Eigenstate Thermalization in a Locally Perturbed Integrable System. , 2020, Physical review letters.

[40]  G. Landi,et al.  Nonequilibrium quantum chains under multisite Lindblad baths. , 2016, Physical review. E.

[41]  M. Moskalets Scattering Matrix Approach to Non-Stationary Quantum Transport , 2011 .

[42]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[43]  M. Znidaric A matrix product solution for a nonequilibrium steady state of an XX chain , 2010, 1006.5368.

[44]  M. Filippone,et al.  Violation of the Wiedemann-Franz law for one-dimensional ultracold atomic gases , 2014, 1410.5841.

[45]  W. Linden,et al.  Auxiliary master equation approach to nonequilibrium correlated impurities , 2013, 1312.4586.

[46]  K. Levin,et al.  Bosonic thermoelectric transport and breakdown of universality , 2013, 1311.0769.

[47]  T. Giamarchi,et al.  Vanishing Hall Response of Charged Fermions in a Transverse Magnetic Field. , 2019, Physical review letters.

[48]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[49]  T. Esslinger,et al.  Conduction of Ultracold Fermions Through a Mesoscopic Channel , 2012, Science.

[50]  Eric Akkermans,et al.  Mesoscopic Physics of Electrons and Photons: Dephasing , 2007 .

[51]  V. Savona,et al.  Nonequilibrium photonic transport and phase transition in an array of optical cavities , 2017, 1706.04936.

[52]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[53]  T. Giamarchi,et al.  Universal Hall Response in Interacting Quantum Systems. , 2019, Physical review letters.

[54]  M. Znidaric Nonequilibrium steady-state Kubo formula: Equality of transport coefficients , 2018, Physical Review B.

[55]  M. Znidaric,et al.  Transport in a disordered tight-binding chain with dephasing , 2012, 1207.5952.

[56]  Nelson Leung,et al.  A dissipatively stabilized Mott insulator of photons , 2018, Nature.

[57]  V. Popkov,et al.  Exact matrix product solution for the boundary-driven Lindblad XXZ chain. , 2012, Physical review letters.

[58]  A. Daley,et al.  Controlling Quantum Transport via Dissipation Engineering. , 2019, Physical review letters.

[59]  M. Znidaric,et al.  Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System. , 2016, Physical review letters.

[60]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[61]  T. Brandes,et al.  Transport with ultracold atoms at constant density , 2013, 1309.3488.

[62]  H. Katsura,et al.  Dissipative spin chain as a non-Hermitian Kitaev ladder , 2018, Physical Review B.

[63]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[64]  L. M. K. Vandersypen,et al.  Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array , 2017, Nature.

[65]  E. Demler,et al.  Non-Gaussian correlations imprinted by local dephasing in fermionic wires , 2020, 2004.07797.

[66]  M. Znidaric,et al.  Interaction instability of localization in quasiperiodic systems , 2018, Proceedings of the National Academy of Sciences.

[67]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[68]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[69]  H. Price,et al.  Quantized Hall Conductance of a Single Atomic Wire: A Proposal Based on Synthetic Dimensions , 2018, Physical Review X.

[70]  T. Prosen,et al.  Spin diffusion from an inhomogeneous quench in an integrable system , 2017, Nature Communications.

[71]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[72]  John Ziman,et al.  Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[73]  T. Prosen,et al.  Exactly solvable counting statistics in open weakly coupled interacting spin systems. , 2013, Physical review letters.

[74]  J. R. Petta,et al.  Scalable gate architecture for a one-dimensional array of semiconductor spin qubits , 2016, 1607.07025.

[75]  W. Linden,et al.  Optimized auxiliary representation of non-Markovian impurity problems by a Lindblad equation , 2016, 1608.04632.

[76]  Jochen Gemmer,et al.  Modeling heat transport through completely positive maps. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  C. Caroli,et al.  Direct calculation of the tunneling current , 1971 .

[78]  I. Sadovskyy,et al.  Scattering matrix approach to the description of quantum electron transport , 2014, 1408.1966.

[79]  G. Ferrari,et al.  Increasing quantum degeneracy by heating a superfluid. , 2012, Physical review letters.

[80]  X. Zotos Finite Temperature Drude Weight of the One-Dimensional Spin- 1 / 2 Heisenberg Model , 1998, cond-mat/9811013.

[81]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[82]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[83]  M. Rigol,et al.  High-temperature coherent transport in the XXZ chain in the presence of an impurity , 2018, Physical Review B.

[84]  T. Prosen,et al.  Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet. , 2019, Physical review letters.

[85]  Quantum many particle systems in ring-shaped optical lattices. , 2005, Physical review letters.

[86]  C. Lobb,et al.  Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link , 2014, 1406.1095.

[87]  Tilman Esslinger,et al.  Observing the drop of resistance in the flow of a superfluid Fermi gas , 2012, Nature.